
SNOBOL4(1) SNOBOL4(1)

NAME
snobol4 − SNOBOL4 interpreter

SYNOPSIS
snobol4[options. . .] [file(s) . . .] [params. . .]

DESCRIPTION
This manual page describes a port of the original Bell Telephone Labs (BTL) Macro Implementation of
SNOBOL4 (MAINBOL) to machines with ILP32 (32-bit int/long/pointer) or LP64 (64-bit long/pointer) C
compilers by Philip L. Budne. The language and it’s implementation are described in [1] and [2].Exten-
sions from Catspaw SNOBOL4+, SPITBOL and SITBOL have been added. This page discusses only the
changes/extensions.

Limitations
All aspects of the language are implemented except;

• Trapping of arithmetic exceptions.

• LOAD() can be used to access external functions on most platforms, but not all. External func-
tions can be staticly linked (poor man’s loading) into the snobol4 executableALL platforms. See
/usr/local/lib/snobol4/load.txt for more information.

Changes
The following behaviors have been changed from the original Macro SNOBOL4;

• Listings are disabled by default. Default listing side (when enabled by-LIST or the-l command
option isLEFT . Listings are directed to standard output.

• Error messages, the startup banner and statistics are directed to standard error. Compilation error
messages (including erroneous lines) appear on standard error as well as in the listings.Error
messages now reference the source file name and line number.

• Character set (see below).

• ThePUNCH output variable no longer exists (seeTERMINAL variable below).

• I/O is not performed using FORTRAN I/O.The 3rd argument to theOUTPUT() and INPUT()
functions are interpreted as a string of I/O options (see below).

• Control lines and comment characters are valid after the end of string (;) statement separator. List-
ing statement numbers show the statement number of the LAST statement on the line (rather than
the first).

• Setting the&ABEND keyword causes a core dump upon termination!

• The value of the&CODE keyword determines the exit status of thesnobol4application.

• TheDATE() function returns strings of the form:MM/DD/YYYY HH:MM:SS. See extensions sec-
tion for arguments to theDATE() function.

• Keyword &STLIMIT now defaults to -1.When&STLIMIT is less than zero there is no limit to
the number of statements executed, and&STCOUNT is not incremented.

• VALUE tracing applies to variables modified by immediate value assignment ($ operator) and
value assignment (. operator) during pattern matching.

• TheBACKSPACE() function is not implemented. Use theSET() function instead.

• I/O unit numbers up to 256 can be used.

• Attempts to output on a closed unit generates a fatal “Output error”

Local 19May 2010 1

SNOBOL4(1) SNOBOL4(1)

Character set
snobol4(1) is 8-bit clean, and uses the native character set.Any 8-bit byte is accepted as a SNOBOL datum
or in a string constant of a SNOBOL source program.The value of the SNOBOL protected keyword
&ALPHABET is a 256-character string of all bytes from 0 to 255, in ascending order.

On ASCII based systems, any character with the 8th bit set is treated as "alphabetic", and can start, or be
used in identifiers and labels.This includes characters from the "upper half" of national character sets and
all bytes resulting from the UTF-8 encoding of Unicode characters.

Programs may be entered in mixed case; By default lower case identifiers are folded to upper case (see
&CASE and−CASE extensions below). Casefolding is performed by using the C libraryislower(3) test,
and then usingtoupper(3) to convert the lower-case characters to upper case. When using UTF-8 encoded
characters in code, case folding should be disabled, to prevent any bytes which appear to be lower case in
the current locale from being modified.

The following operator character sequences are permitted and represent a cross between PDP-10 Macro
SNOBOL (a.k.a. DECBOL), SITBOL and Catspaw SPITBOL usage;

Exponentiation: ˆ**
Alternation: | !
Unary negation: ˜ \
Assignment: =_
Comment line: * # | ; !
Continuation line: + .

Both square brackets ([]) and angle brackets (<>) may be used to subscript arrays and tables.The TAB
(ASCII 9) character is accepted as whitespace. Note that the use of the pound sign for comments allows
use of the shell interpreter sequence at the top of a file (ie; "#!/usr/local/bin/snobol4 -b"). Underscore (_)
and period (.) are legal within identifiers and labels.

Extensions
ARRAY/TABLE access

Multiple ARRAY and/orTABLE index operations may appear in a row, without having to resort
to use of theELEMENT function, so long as no intervening spaces (or line continuations) appear.

BREAKX()
TheBREAKX() function is a pattern function used for fast scanning.BREAKX(str) is equivalent
to BREAK(str) ARBNO(LEN(1) BREAK(str)). In other words BREAKX matches a sequence
of ever larger strings terminated by a break set. BREAKX can be used as a faster matching
replacement forARB; BREAKX(’S’) ’STRING’ always runs faster thanARB ’STRING’ since
it only attempts matching’STRING’ at locations where an’S’ has been detected.

Case folding
By default the compiler folds identifiers and directives to upper case, so programs can be entered
in either case.To disable case folding use the directive −CASE 0 or −CASE. To re-enable case
folding use directive −CASE n wheren is a non-zero integer. The status of case folding may be
examined and controlled from a running program by the unprotected system keyword &CASE .

CHAR()
TheCHAR() function takes an integer from 0 to 255 and returns the n’th character in&ALPHA-
BET.

DATE()
For compatibility with new versions of Catspaw SPITBOL DATE(0) returns strings of the form
MM/DD/YY HH:MM:SS, and DATE(2) returns strings of the formYYYY-MM-YY HH:MM:SS.
With any other argumentsDATE() returns strings of the formMM/DD/YYYY HH:MM:SS.

Local 19May 2010 2

SNOBOL4(1) SNOBOL4(1)

−ERROR/−NOERRORS
Directives −ERROR and−NOERRORS control execution of program with compiler errors.If
the−ERROR directive is giv en, the program will be executed (but any attempt to execute a state-
ment with a compiler error will cause a fatal execution error).By default programs with compiler
errors will not be started, this can be restored using−NOERRORS.

&ERRTEXT
After an otherwise fatal error is curtailed due to a non-zero value in&ERRLIMIT , the protected
keyword&ERRTEXT will contain the error message.

−EXECUTE/−NOEXECUTE
Directives −EXECUTE and−NOEXECUTE control execution of programs. If the−NOEXE-
CUTE directive is giv en, the program will be not executed after compilation.−EXECUTE Can-
cels any previous−NOEXECUTE .

FREEZE()/THAW()
The FREEZE() function prohibits creation of new entries in the referenced table. This is useful
once a table has been initialized to avoid creating empty entries on lookups that fail. This can
greatly improve program speed, since frozen tables will not become clogged with empty entries.
Lookups for uninitialized entries will return the null string. Attempts to assign to a non-existent
entry will cause a “Variable not present where required” error. TheTHAW() function restores nor-
mal entry creation behavior.

FUNCTION()
The FUNCTION() predicate evaluates it’s argument as a string (with case folding), and returns
the null string if a function with that name exists and fails if it does not.TheFUNCTION() predi-
cate exists in SITBOL.

>RACE
If set to a non-zero value, each time a garbage collection is run, a trace message is output indicat-
ing the source file and line number of the current statement, how long the GC took, and how many
units of storage are now free.

HOST()
A l imited simulation of the SPITBOLHOST() function (with liberal implementation specific
extensions) is included.

The -INCLUDE file host.sno contains symbolic defines for these (and many other) function
codes.

HOST() with no parameters returns a string describing the system the program is running on.The
string contains three parts, separated by colons.The first part describes the physical architecture,
the second describes the operating system, and the third describes the language implementation
name. Example:i386:FreeBSD 7.1-RELEASE:CSNOBOL4 1.3

HOST(0) returns a string containing the command line parameter supplied to the-u option, if any.
If no -u option was given, HOST(0) returns the concatenation of all user parameters following the
input filename(s).

HOST(1,string) passes the string to thesystem(3) c library function, and returns the subprocess
exit status.

HOST(2,n) for integer n returns then’th command line argument (regardless of whether the argu-
ment was the command name, an option, a filename or a user parameter) as a string, or failure ifn
is out of range.

HOST(3) returns an integer for use withHOST(2) indicating the first command line argument
available as a user parameter.

Local 19May 2010 3

SNOBOL4(1) SNOBOL4(1)

HOST(4,string) returns the value of the environment variable namedstring.

−INCLUDE
The −INCLUDE directive causes the compiler to interpolate the contents of the named file
enclosed in single or double quotes.Any filename will be included only once, this can be overrid-
den by appending a trailing space to the filename.Trailing spaces are removed from the filename
before use.If the file is not found in the current working directory an attempt will be made to find
it in the directory specified by theSNOLIB environment variable, or if that is not set, a predeter-
mined library directory.

−COPY is a synonym for−INCLUDE for compatibility with SPITBOL/370.

IO_FINDUNIT()
The IO_FINDUNIT() function returns an unused I/O unit number for use with theINPUT() or
OUTPUT() functions. IO_FINDUNIT() is meant for use in subroutines which can be reused.
IO_FINDUNIT() will never return a unit number below 20.

LABEL()
TheLABEL() predicate evaluates it’s argument as a string (with case folding), and returns the null
string if a label with that name has been defined, and fails if it does not.TheLABEL() predicate
was copied from SITBOL and Steve Duff’s version of Macro SPITBOL.

>RACE
keyword enables Garbage Collection tracing if non-zero. If positive, the value of>RACE will
be decremented after it is tested.

&LINE/&FILE/&LASTLINE/&LASTFILE
The &LINE and&FILE keywords can be used to determine the source file and file line associ-
ated with the current statement.The &LASTLINE and&LASTFILE return the source file and
file line associated with the previous statement.

−LINE
The −LINE directive can be used to alter SNOBOL’s idea of the current source file and line (ie;
for use by preprocessors).−LINE takes a line number and an optional quoted string filename.

Lexical comparison
A full set of lexical (string) comparison predicates have been added to complement the standard
LGT() function;LEQ() , LGE() , LLE() , LLT() , LNE() .

LPAD()/RPAD()
The LPAD() andRPAD() functions take the first argument (subject) string, and pad it out to the
length specified in the second argument, using the first character of the optional third argument. If
the third argument is missing, or is the null string, spaces will be used for padding. The subject
will be returned unmodified if already long enough.

Named files
Filenames can be supplied to theINPUT() andOUTPUT() functions via an optional fourth argu-
ment. If the filename begins with a vertical bar (|), the remainder is used as a shell command
whose stdin (in the case ofOUTPUT()) or stdout (in the case ofINPUT()) will be connected to
the file variable via a pipe. If a pipe is opened by INPUT() input in "update" mode, the connection
will be bi-directional (on systems with socketpair and Unix-domain sockets). Thefilename -
(hyphen) is interpreted as stdin onINPUT() and stdout onOUTPUT(). The magic filenames
/dev/stdin, /dev/stdout, and /dev/stderr refer to the current process standard input, standard out-
put and standard error I/O streams respectively regardless of whether those special filenames exist
on your system. The magic pathname/dev/fd/n, opens a new I/O stream associated with file
descriptor numbern. The magic pathname/tcp/hostname/servicecan be used to open connection
to a TCP server. If the path ends in the optional suffix /priv the local address will be bound to a
port number below 1024, if process privileges allow. /udp/hostname/servicebehaves similarly for
UDP. The magic pathname/dev/tmpfile opens an anonymous temporary file for reading and writ-
ing, seetmpfile(3). OnVMS, Win32, and MS-DOS (when compiled with DJGPP), the pathnames

Local 19May 2010 4

SNOBOL4(1) SNOBOL4(1)

/dev/null and /dev/tty are magical, and refer to the null device, and the user’s terminal/console,
respectively.

ORD()
TheORD() function returns the ordinal value (zero to 255) of the first character in it’s string argu-
ment (the inverse of theCHAR() function).

&PARM
The entire command line is available via the&PARM protected keyword for compatibility with
Catspaw SNOBOL4+. Use of the SPITBOL compatibleHOST() function is probably preferable.

REAL numbers inINTEGER contexts
REAL numbers (or strings convertible to REAL) are accepted in all contexts which previously
required anINTEGER (or string convertible to INTEGER). Contexts include TABLE() ,
ITEM() , array indices, INPUT() , OUTPUT(), SET(), keyword values, CHAR() , RPAD(),
LPAD() , FIELD() , COLLECT() , DUMP(), DUPL(), OPSYN(), SUBSTR().

REVERSE()
REVERSE() returns it’s subject string in reverse order.

Scientific notation
REAL number syntax has been expanded to allow exponents of the form:
ANY(’Ee’) (’+’ | ’-’ | ’’) SPAN(’0123456789’). Exponential format reals need not contain a deci-
mal point.

SERV_LISTEN()
The SERV_LISTEN() function makes SNOBOL4 into a network server process, and takes three
STRING arguments: FAMILY, TYPE, SERVICE. FAMILY must be either "inet" for an Internet
Protocol v4 socket, "inet6" for an Internet Protocol v6 socket, or "unix" for a local ("unix
domain") socket. Thesecond argument, TYPE must be "stream", and the third argument, SER-
VICE must be a port number or service name (for an internet socket), or a pathname (for a "unix"
socket). SERV_LISTEN() listens for incoming requests, accepts them, then "forks" a child
process and returns an integer file descriptor which can be opened for bidirectional I/O using a
"/dev/fd/n" magic pathname. The original ("parent") process never returns from the SERV_LIS-
TEN() call. This function is only available on systems with the "fork" system call, which makes a
child process which is an identical copy of the parent process.

SET()
The SET() function can be used to seek the file pointer of an open file.The first argument is an
I/O unit number, the second is an integer offset. Thethird argument, an integer determines from
whencethe file pointer will be adjusted.If whence is zero the starting point is the beginning of
the file, if whence is one, the starting point is the current file pointer, and if whence is two, the
starting point is the end of the file.SET() returns the new file pointer value. Onsystems with
64-bit file pointers and 32-bit integers (ie; 4.4BSD on i386) the return value will be truncated to
32-bits, and only the first and last 4 gigabytes of a file can be accessed directly.

SITBOL file functions
FILE(string) is a predicate which returns the null string if it’s argument is the name of a file that
exists, and fails if it does not. DELETE(string) is a predicate which tries to remove the file
named by it’s argument, and fails if it cannot.RENAME(string1,string2) is a predicate which
attempts to rename the file named bystring2 to the file named bystring1. Unlike the SITBOL
version, if the target file exists, it will be removed.

SNOBOL4+ real functions
EXP(), LOG() andCHOP() functions are available for compatibility with SNOBOL4+.EXP()
returns the valuee ** x , LOG() returns the natural logarithm of it’s REAL argument, andCHOP()
truncates the fractional part of it’s REAL argument (rounding towards zero), and returns a REAL.

Local 19May 2010 5

SNOBOL4(1) SNOBOL4(1)

SORT()/RSORT()
TheSORT() andRSORT() functions take two arguments. Thefirst can be either an array or a ta-
ble. If the first argument is an array, it may be singly-dimensioned in which case the second argu-
ment, if non-null should indicate the name of a field of a programmer defined data type to use to
access the sort key. Otherwise the first argument should be a table or a doubly-dimensioned array,
in which case the second argument may an integer indicating the array column on which to sort.If
the second argument is null, it is taken to be 1.The array (or table) is not modified; a new array is
allocated and returned.SORT() sorts elements in ascending order, while RSORT() sorts in
descending order.

Example: for a tableTAB of integers, indexed by strings being used to tabulate word countsFREQ
= RSORT(TAB,2)returns an array such thatFREQ<1,1> contains the most frequent word while
FREQ<1,2> contains the number of occurrences of that word. WhileWORDS = SORT(TAB,1)
returns an array with the rows by the lexicographical ordering of the words;WORDS<1,1>con-
tains the lexicographically first word andWORDS<1,2>contains the number of occurrences of
that word.

SPITBOL operators
The SPITBOL scan (?) and assignment (=) operators have been added.A pattern match can
appear within an expression, and returns the matched string as it’s value. Similarlyassignment can
appear in an expression, and returns the assigned value. An assignment after a scan (ie;STRING ?
PA TTERN = VALUE) performs a scan and replace.Assignment is right associative, and has the
lowest precedence, while scan is left associative and has a precedence just higher than assignment.

The SPITBOL selection/alternative construction can be used in any expression. Itconsists of a
comma separated list of expressions inside parentheses. The expressions are evaluated until one
succeeds, and it’s value is returned.Abuse of this construction may result in incomprehensible
code.

The typeNUMERIC with CONVERT() and the removal of leading spaces from strings con-
verted to numbers (implicitly or explicitly) are also legal when SPITBOL extensions are enabled.
SPITBOL extensions can be enabled and disabled using the−PLUSOPSdirective. −PLUSOPS 0
disables SPITBOL operators, while−PLUSOPSor −PLUSOPSn wheren is a non-zero integer
enables them. SPITBOL extensions are enabled by default.

SQRT()
The SQRT() function is available for compatibility with SPARC SPITBOL. SQRT() fails if the
argument is negative, but does not cause a fatal error.

SSET()
Experimental "scaled set" function.Takes arguments unit, offset, whence, and scale.The first
three are analogous to the same arguments for theSET() function. Thelast parameter is used as a
multiplicative scaling factor on theoffset parameter, and as a divisor on the return value. When
used in combination with relative SET() calls (whence of one), any file offset can be achieved,
ev en when system file offsets are larger than can be represented in a SNOBOL4INTEGER . Sup-
port for "Large Files" is enabled when available, but not all file systems support them.

SUBSTR()
SUBSTR() takes a subject string as it’s first argument, and returns the substring starting at the
position specified by the second argument (one-based) with a length specified by the third argu-
ment. Ifthe third argument is missing or zero, the remainder of the string is returned.

TERMINAL I/O variable
The variableTERMINAL is associated with the standard error file descriptor for both input and
output.

Local 19May 2010 6

SNOBOL4(1) SNOBOL4(1)

Trig functions
SIN(), COS() and TAN() functions are available for compatibility with SPARC SPITBOL and
take arguments in radians.

&UCASE/&LCASE
Protected keywords &UCASE and &LCASE contain upper and lower case characters respec-
tively.

VDIFFER()
The VDIFFER() function takes two arguments, if they DIFFER() , the first argument’s value is
returned. Thisis intended to be used in contexts whereDIFFER(X) Xwould otherwise have been
used. TheVDIFFER() function was copied from Steve Duff’s version of Macro SPITBOL.

I/O Associations
I/O is performed by associating a variable name with a numbered I/O unit using theINPUT() andOUT-
PUT() functions. Thefollowing associations are available by default;

Variable Unit Association
INPUT 5 standard input
OUTPUT 6 standard output
TERMINAL 7 standard error (output)
TERMINAL 8 /dev/tty (input)

I/O Options
The third argument of theINPUT() and OUTPUT() functions is interpreted as a string of single letter
options, commas are ignored. Some options effect only the I/O variable named in the first argument, others
effect any variable associated with the unit number in the second argument.

digits A span of digits will set the input record length for the named I/O variable. Thiscontrols the max-
imum string that will be returned for regular text I/O, and the number of bytes returned for binary
I/O. Recordlength is per-variable; multiple variables may be associated with the same unit, but
with different record lengths.

A For OUTPUT() the unit will be opened for append access (no-op forINPUT()).

B The unit will be opened for binary access. On input newline characters have no special meaning;
the number of bytes transferred depends on record length (see above). On output no newline is
appended. For terminal devices, all I/O to this unit will be done without special processing for line
editing or EOF, while characters which deliver signals (interrupt, kill, suspend) are still processed.
Units opened on the same terminal device entry operate independently; some can use binary mode,
while others operate in text mode.

C Character at a time I/O.A synonym forB,1.

T Terminal mode. No newline characters are added on output, and any newline characters are
returned on input.Terminal mode effects only the referenced unit.Terminal mode is useful for
outputting prompts in interactive programs.

Q Quiet mode.Turns off input echo on terminals. Effects only input from this unit.

U Update mode. The unit is opened for both input and output.

W Unbuffered writes. Each output variable assignment causes an I/O transfer to occur, rather than
collecting the data in a buffer for efficiency.

OPTIONS
-b Toggle startup banner output (by default on).

-d DDD Allocate “dynamic storage” region ofDDD descriptors for program code and data. A suf-
fix of k multiplies the number by 1024, a suffix of m multiplies the number by 1048576.

Local 19May 2010 7

SNOBOL4(1) SNOBOL4(1)

A larger dynamic region may result in fewer garbage collections (storage regenerations),
however large values may cause execution to slow down when large amounts of garbage
collect. Mostprograms do not need an increased dynamic region to run. If your program
terminates with an “Insufficient storage to continue” message you need to increase the
dynamic storage region size.

-f Toggle folding of identifiers to upper case (see−CASE and&CASE).

-g Enable garbage collection tracing (sets>RACE to -1).

-h Give help. Shows usage message, includes default sizes for “dynamic region” and pattern
match stack.

-k Toggle running programs with compilation errors (see−ERROR and −NOERRORS
extensions). Bydefault programs with compilation errors will not be run.

-l Re-enable listing to stdout. (default is−UNLIST). Default listing side isLEFT .

-n Toggle running programs after compilation (see−EXECUTE and −NOEXECUTE
extensions). Bydefault programs are run after compilation.

-p Toggle SPITBOL extensions (also controlled by−PLUSOPS).

-r Toggle readingINPUT from input file(s) afterEND label. OtherwiseINPUT defaults
(back) to standard input after program compilation is complete.

-s Toggle termination statistics (off by default).

-u params specifies a parameter string available viaHOST(0).

-v Show version and exit.

-- Terminates processing items as options. Any remaining strings are treated as files or user
parameters.

-M Specifies that all items left on the command line after option processing is complete are
to be treated as filenames.The files are read in turn until anEND statement is found
(Any remaining data is available via theINPUT variable if the-r option is also given). A
-- terminates processing of arguments as files, and makes the remaining arguments avail-
able as user parameters (see theHOST() function).

-P DDD Allocate DDD descriptors for the pattern match stack.A suffix of k multiplies the num-
ber by 1024, a suffix of m multiplies the number by 1048576. The pattern match stack is
used to save backtracking and conditional assignment information during pattern match-
ing. If your program terminates with an “Overflow during pattern matching” message
(Error 16) you need to increase the pattern match stack size.

-S DDD Allocate DDD descriptors for the interpreter stack.A suffix of k multiplies the number
by 1024, a suffix ofm multiplies the number by 1048576. The interpreter stack is used
for saving data, and passing parameters to internal procedures. If your program termi-
nates with an “Stack overflow” message (Error 21) you need to increase the interpreter
stack size.A common reason for needing additional stack space is for tracing deeply
nested DAT A() structures during garbage collection.

SEE ALSO
snobol4dbm(3),snobol4tcl(3),snolib(3).

http://www.snobol4.org
All things SNOBOL4 related.

Local 19May 2010 8

SNOBOL4(1) SNOBOL4(1)

http://www.snobol4.com
Catspaw: commercial SPITBOL implementations, Free SNOBOL4+ for DOS.

http://www.snobol4.org/doc/burks/tutorial/contents.htm
SNOBOL4 language tutorial (from Catspaw Vanilla SNOBOL4)

http://www.snobol4.org/doc/burks/manual/contents.htm
Catspaw Vanilla SNOBOL4 manual.

ftp://ftp.snobol4.com/spitman.pdf
Catspaw Macro SPITBOL manual

[1] R. E. Griswold, J. F. Poage, and I. P. Polonsky
The SNOBOL4 Programming Language, 2nd ed., Prentice-Hall Inc., 1971.
Reference manual for Macro SNOBOL4. (soon to be available as a PDF!!!)

[2] R. E. Griswold,
The Macro Implementation of SNOBOL4, W. H. Freeman and Co., 1972.
Book describing the implementation techniques used in Macro SNOBOL4.

ftp://ftp.snobol4.org/snobol/doc/
Directory with sources for University of Arizona SNOBOL4 memos, including formatted versions
of memo s4d58, which describes each pseudo-instruction in the Snobol Implementation Language
(SIL).

AUTHOR
Philip L. Budne

with a little help from:

R. E. Griswold, J. F. Poage, and I. P. Polonsky

Mark Emmer (code from SNOBOL4+)

Viktors Berstis (code from Minnesota SNOBOL4)

DIAGNOSTICS
“Insufficient storage to continue” (error 20)

“Dynamic” storage exhausted. See the-d option.

“Stack overflow” (error 21)
Interpreter stack exhausted. See the-S option.

BUGS
I/O retains some record oriented flavor.

I/O is still tied to unit numbers.

“Dynamic” storage cannot be expanded after startup.

Integer math can never "fail", even on overflow.

Oversize integer constants may not be detected.

Local 19May 2010 9

