
-- --

The University of Arizona
Department of Computer Science
Tucson, Arizona 85721

Corrigenda for The Macro Implementation of SNOBOL4

Ralph E. Griswold

February 9, 1987

A list of corrections to The Macro Implementation of SNOBOL4, published by W.H. Freeman, fol-
lows.

In this list, line numbers are counted from the top of the page. This line numbering system was
chosen for clarity, although it causes extra work in locating an error near the bottom of a page. Page head-
ings and blank lines are not counted. In figures, blank areas, rulings, and horizontal lines are not counted,
but lines of dots are. In a few places, especially where figures are involved, there are ambiguities in count-
ing lines. The context provided for corrections can be used to resolve these problems.

Brackets ([]) surround comments about corrections. In places where a large amount of text is to be
inserted, this text has been broken out of the regular column format and enclosed in lines ruled across the
page.

I have attempted to assure the accuracy and completeness of the corrections. Please let me know if
there are errors or omissions in the corrigenda.

Thanks go to individuals who called errors to my attention: Walter Bosse, John Doyle, Pierre Goyer,
John Hallyburton, Ken Moody, Dan Ophir, Forrest Pitts, William Sears, and Martha Wagner.

-- --

- 2 -

pages lines current text replacement text

hh
42 16 20 10

45 26 synonymns synonyms

61 1 4d 4cpd

3 4d 4cpd

10−11 variable, ... variable with an offset of 4cpd, where cpd is the
... of the string. number of characters that fit into the space

occupied by a descriptor.

66 13 POS(M) | POS(P) (POS(M) | POS(P))

69 4 F [in F field of A descriptor]

9 F [in F field of A descriptor]

14 F [in F field of A descriptor]

87 6 −−−> [at top descriptor of left block]

7 −−−> [at left block] [delete arrow]

92 9 42 0 41 41 0 42

12 60 0 59 59 0 60

93 15 replace
3

repl
3

20 replace
3

repl
3

94 1 ∗
2

+
2

[in node at top]

7 +
2

∗
2

[at right of arrow]

95 4 DUPL(7,X) DUPL(X,7)

100 36 L
i
,...,L

m
. L

i
,...,L

m
and the value of E is N.

101 4 {E} {N}

15 −−−−−−> [move arrow up one discriptor]

16 −−−−−−> [delete arrow]

29 E N

102 4 F [in F field of left descriptor]

−− −−

− 3 −

103 28 −−−−−−> [move arrow up one descriptor]

29 −−−−−−> [delete arrow]

104 11 {E} {N}

32 E N

105 9 values of A
1
,... values of F, A

1
,...

106 1 5 8

107 4 F [in F field of left descriptor]

30 F Fi [two places]

108 4 F [in F field of left descriptor]

110 10 s si

111 15 L+ n + 2 ...))) L + d(n + 2 + (((o
n
s
n−1 + o

n−1)s
n−2 + ... + o

2
)s
1
+ o

1
))

16 s
n
o
n

o
n
s
n−1

17 ... s
n

and l
n

are the last dimension is the ...

112 33 M M′ = M + 1

34 N N′ = N + 1

113 1 M M′

1 N N′ [two places]

5 N N′ [two places]

6 N N′

121 12 TAB(4)|LEN(2) TAB(4) | LEN(2)

14 replace
3

repl
3

124 13 third argument ... third argument. The offset of the third component is an
alternate of 6d rather than a subsequent of 3d as
suggested by Figure 8.7.7, since mfarb

2
uses its knowledge

of the pattern structure to obviate reprocessing of mnull
2
.

125 9−16 There are two ... [replace by text below]
the pattern for P1.

hh

An unevaluated expression may appear in several contexts: as a pattern itself, as an argument of a pattern-
valued function, or as an operand of concatenation or alternation.

-- --

- 4 -

If an entire pattern is an unevaluated expression, that expression is evaluated and the result is used in pat-
tern matching.

hh
125 23−32 8d T ∗ ... [delete entire figure]

∗F(X) LEN(3).

126 7−29 As a pattern ... [replace by text below]
during evaluation.

hh

If an unevaluated expression appears as an operand of alternation or concatenation, a pattern is constructed
that provides matching procedures to handle the unevaluated expression during pattern matching. An
example is given by

P1 = ∗F(X) LEN(3)

which constructs the pattern shown in Figure 8.7.9.

hhhhhhhhhhhhhhhh
15d T ∗hhhhhhhhhhhhhhhh
3 F −−−−−>m∗

3hhhhhhhhhhhhhhhh
4d 0 0hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh location of call to F(X)
E A −−−−−> in prefix codehhhhhhhhhhhhhhhh
2 F −−−−−>mnull

2hhhhhhhhhhhhhhhh
11d 0 7dhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh
3 F −−−−−>msbac

3hhhhhhhhhhhhhhhh
4d 0 0hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh
0 0 0hhhhhhhhhhhhhhhh
3 F −−−−−>mlen

3hhhhhhhhhhhhhhhh
0 0 0hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh
I 0 3hhhhhhhhhhhhhhhh

Figure 8.7.9
The Pattern ∗F(X) LEN(3).

When the first component is encountered during pattern matching, the matching procedure for m∗
3

causes
the prefix code pointed to by its argument to be interpreted, resulting in the evaluation of F(X). The result
is stored for possible later use in the argument descriptor of the component with the matching procedure
msbac

3
. The connector descriptor and cursor position are pushed onto PATSTK as in step (3) of the

−− −−

− 5 −

pattern−matching algorithm described in Section 8.7.3. Next SCNR is called at an entry that causes pattern
matching to continue, but without the usual initialization. The signals on return are transmitted in the nor-
mal manner.

The component with matching procedure msbac
3

is necessary in case the match resulting from m∗
3

is
successful, but failure of a subsequent component forces backup. In this case, msbac

3
returns control to

its argument (the result of evaluating the argument of m∗
3
) to attempt to match alternatives. If this attempt

succeeds, matching continues as before. It it fails, match failure is signaled in the usual fashion. A diagram
of component relations is shown in Figure 8.7.10.

∗F(X) NULL LEN(3)

SBAC

Figure 8.7.10
Relation of Components for Unevaluated Expressions.

hh

127 36 8.7.10 8.7.11

128 22 8.7.10 8.7.11

132 16 1 0

137 19 2 2 [two places]

140 8 exectuion execution

144 4 S [delete]

150 4 $(′SUM′ N) 10 $(′SUM′ N) = 10

160 22 ideas idea

164 2 V
1
+V

3
V
1
+V

2

169 2 X = 1 X = 1

6 X = 1 X = 1

170 4 ...stack position. ...stack position. This is the location of the last
Descriptors ... (most recently pushed) descriptor. Descriptors ...

−− −−

− 6 −

20 −−−−−−> [move arrow up one descriptor]

21 −−−−−−> [delete arrow]

27 −−−−−−> [move arrow up one descriptor]

28 −−−−−−> [delete arrow]

172 3 −−−−−−> [move arrow up one descriptor]

4 −−−−−−> [delete arrow]

7 −−−−−−> [move arrow up one descriptor]

8 −−−−−−> [delete arrow]

16 −−−−−−> [move arrow up one descriptor]

17 −−−−−−> [delete arrow]

185 2 writtern written

281 14−15 The DEFINE ... entry The DEFINE block for F() consists of two descriptors,
point F. one for the entry point, F, and one for the name of the

function, F.

287 28 9.2.17 9.2.16

34 9.2.18 9.2.17

