February 1981

$ADS58

Implementing SNOBOL4 in SIL; Version 3.11

Ralph E. Griswold

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

Implementing SNOBOL4 in SIL; Version 3.11

Ralph E. Griswold

Department of Computer Science
The University of Arizona
Tucson, Arizona 85721

1. Introduction

The SNOBOL4 programming language is implemented in macro-assembly language called SIL
(SNOBOL4 Implementation Language). This macro language is largely machine-independent and is
designed so that it can be implemented on a variety of computers. Thus, an implementation of the
SNOBOL4 programming language can be obtained by implementing the much simpler macro language.
By implementing the macro language, and using the SNOBOL4 system already written in the macro
language, one obtains a version of SNOBOL4 that is largely source-language compatible with other
versions implemented in the same way. Nearly al the logic of the SNOBOL4 language resides in the
program written in the macro language. Thus if the macro language isimplemented properly, the resulting
implementation of SNOBOL4 is essentially the same as other such implementations.

This paper describes the macro language and contains information necessary for its implementation.
Information given here related to Version 3.11 of the SIL source, although it applies equally well to any
modification of the basic Version 3. Section 2 describes environmenta considerations. Section 3 describes
the representation of data. Syntax tables and character graphics are described in Section 4. Section 5
explains the method used to describe the macro operations. Section 6 isalist of all macro operations with
a description of how to implement each one. Section 7 contains miscellaneous implementation notes.
Supplementary information, including alist of other documentation, is given in appendices.

2. Environmental Considerations

2.1. Input and Output

SNOBOL4 is designed to perform al input and output through FORTRAN IV routines. A
SNOBOL4 object program has much the same /O facilities as a FORTRAN |V object program.
Specification of 1/O is thus largely machine-independent both at the source-language level and at the
implementation level.

Files are referred to by their FORTRAN unit reference numbers. In SNOBOL4 unit reference
numbers are integers that appear in data that is given in arguments to macros that perform input and output.
Unit reference numbers are referred to symbolically in the SNOBOL4 assembly. See the PARNS file in
the discussion of the COPY macro.

Input, performed by STREAD, uses only A conversion, with lengths being specified. Output is
controlled by formats. Output is performed by OUTPUT and STPRNT. The output done by the
SNOBOL4 system specifies H-type literals, A, |, and, in one case, F conversion. Programmer formats
should only literals, X, T, and A conversion. Generally speaking, formats occur in **‘undigested’”’ form.
Formats used by OUTPUT are assembled by the FORMAT macro and are intended to be simply character
strings representing undigested formats. FORMAT may, however, assemble any convenient representation
of the format. Formats used by STPRNT are strings that may be formed during program execution and
hence must be accepted in their undigested form.

There are three other /O related operations that correspond to their FORTRAN counterparts. These
are BKSPCE, ENFI LE, and REW ND.

The easiest way to implement SNOBOL4 1/O is to use FORTRAN caling sequences for
corresponding operations and link the FORTRAN 1/O library with the SNOBOL4 system. The main

difficulties usually occur in handling undigested formats. When questions arise as to what an operation
should do, FORTRAN conventions should be applied. A programmer should get the same results from
SNOBOL4 as from FORTRAN if, for example, a string of 200 characters is requested from a file
containing 80-character records.

2.2. Storage Requirements

The SNOBOL4 system itself is very large and SNOBOL 4 programs typically require large amounts
of dynamically alocated storage. The magnitude of these requirements may be determined from the
implementation for the IBM System/360. This system requires a user partition of about 200K bytes
(characters) to run large programs. A partition of about 170K bytes permits execution of small programs.
Of the space required, the SNOBOL4 system and its internal data consume about 100K bytes, the
FORTRAN 1/O routines consume about 14K bytes, and the remainder is devoted to dynamically allocated
storage. Allocated storage is referred to in machine-independent data units (see the next section) called
descriptors that occupy 8 bytes each on the IBM System/360. A production system should be able to
provide about 10,000 descriptors of dynamically allocated storage. Because of the large amount of space
required for dynamic storage, overlay techniques for the program itself can only partially reduce the
requirements for physical storage. Virtual memory systems may display poor performance if SNOBOL4 is
run with inadegquate amounts of physical storage.

2.3. Other Considerations

SNOBOL4 makes few other demands on its operating system environment. Facilities should be
provided so that the SNOBOL4 system can be called and can return to the operating system under which it
operates. SNOBOL4 uses dump facilities to provide core dumps requested by the keyword &ABEND if
such facilities are available. Time and date information is used by SNOBOLA4, but it is not essential.

3. Representation of Data

There are afew basic types of data used in the SNOBOL4 system, and a number of aggregates of the
basic types. The basic types of data are:

descriptors
specifiers

character strings
syntax table entries

3.1. Descriptors

Descriptors are used to represent all pointers, integers, and real numbers. A descriptor may be
thought of asthe basic **‘word’’’ of SNOBOLA4. Descriptors consist of three fixed-length fields:

address

flag
value

The size and position of these fieldsis determined from the data they must represent and the way that
they are used in the various operations. The following paragraphs describe some specific requirements.

3.1.1. AddressFied

The address field of a descriptor must be large enough to address any descriptor, specifier, or
program instruction within the SNOBOL4 system. (Descriptors do not have to address individual
characters of strings. See Section 3.2.) The address field must also be large enough to contain any integer
or real number (including sign) that is to be used in a SNOBOL4 program. The address field is the most
frequently used field of a descriptor and is used frequently for addressing and integer arithmetic and it
should be positioned so that these operations can be performed efficiently.

3.1.2. Flag Field

The flag field is used to represent the states of a number of disjoint conditions and is treated as a set
of bitsthat are individually tested, turned on, and turned off. Five flag bitsused in SNOBOL 4.

3.1.3. ValueField

The value field is used to represent a number of internal quantities that are represented as unsigned
integers (magnitudes). These quantities the encoded representation of source-language data types, the
length of strings, and the size (in address units) of various data aggregates. The value field need not be as
large as the address field, but it must be large enough to represent the size of the largest data aggregate that
can be formed.

On the IBM System/360, a descriptor is two words (eight bytes). The first word is the address field.
The second word consists of one byte for the flag field and three bytes for the val ue field. The three bytes
(24 bits) for the value field permits representatlon of data objects as large as 221 bytes. On the other
hand, two byt% would limit objects to 2161 bytes. Since on the IBM System/360 there are eight bytes per
descriptor, 216.1 bytes would limit objects to 8191 descriptors, which would be too restrictive. For
machines with fewer address units per descriptor, the value field need not be as large.

3.2. Specifiers

Specifiers are used to refer to character strings. Almost all operations performed on character strings
are handled through operations on specifiers. All specifiers are the same size and have five fields:

address
flag
value
offset
length

Specifiers and descriptors may be stored in the same area indiscriminately, and are indistinguishable
to many processes in the SNOBOL4 system. As a result, specifiers are composed of two descriptors. One
descriptor is used in the standard way to provide the address, flag, and value fields. The other descriptor is
used in a nonstandard way. Its address field is used to represent the offset of an individual character from
the address given in the specifier's address field. The value field of this other descriptor is used for the
length.

3.3. Character Strings

Character strings are represented in packed format, as many characters per descriptor as possible.
Storage of character strings in SNOBOL 4 dynamic storage is always in storage units that are multiples of
descriptors.

3.4. Syntax Table Entries

Syntax tables are necessarily somewhat machine dependent. Consequently, implementation of these
tables is done individualy for each machine. A description of the table requirements is given in the next
section.

4. Syntax Tablesand Character Graphics

4.1. Characters

The SNOBOL4 language permits the use of any character that can be represented on a particular
machine. There are certain characters that have syntactic significance in the source language. The card
codes, graphics, and internal representations vary from machine to machine. For each machine,
representations are chosen for each of the syntactically significant characters. Such characters and sets of
characters are given descriptive names to avoid dependence on a particular machine. In the list that
follows, ASCII graphics are used as a point of reference.

function

ALPHANUMERI C

AT
BLANK
BREAK
CMT
CNT
COLON

COWWA
CTL
DOLLAR
DOT
DQUOTE
ECS

EQUAL
FGOSYM
KEYSYM
LEFTBR
LEFTPAREN
LETTER

M NUS
NOTSYM
NUVBER
ORSYM
PERCENT
PLUS

POUND
QUESYM

RAI SE

Rl GHTBR

Rl GHTPAREN
SGOSYM
SLASH
SQUOTE
STAR

TERM NATOR

4.2. Syntax Tables

The lexical syntax of the SNOBOL 4 language is analyzed using the operation STREAM(g.v.) which
is driven from syntax tables. The syntax tables provide a representation of a finite state machine used

name

digit and letter

operator

separator and operator
dot and underscore
comment card
continue card

goto designator and
dimension separator
argument separator
control card

operator

operator

literal delimiter
statement terminator
assignment

failure goto designator
operator

reference and goto delimiter
expression delimiter
letter

operator

operator

digit

operator

operator

operator

operator

operator

operator

reference and goto delimiter
expression delimiter
success goto designator
operator

literal delimiter
operator

expression terminator

graphics

ABCDEFGHI JKLMNOPQRSTUWKYZ
abcdef ghi j kl mopqgr st uvwxyz
0123456789

@
blank and tab

*

+.

[

ABCDEFGHI JKLMNOPQRSTUWKYZ
abcdef ghi j kl mopqgr st uvwxyz

~ AT

0123456789

|
%
+

RN PSS

[a——

-\va

*

;) >,] blank and tab

during lexical analysis. See Reference 3 in Appendix B for amore detailed discussion.

In a syntax table there is an entry for each character at a position corresponding to the numerical
value of the internal encoding of that character. The syntax table entry specifies the action to be taken if

that character is encountered. The actions are:

1. CONTI N, indicating that the current syntax table is to be used for processing the next character.

2. GOTQ(TABLE) , indicating that TABLE isto be used for processing the next character.

3. STOPR, indicating that STREAM should terminate with the last character examined to be included in
the accepted string.

4. STOPSH, indicating the STREAMshould terminate with the last character examined not to be included
in the string accepted.

5. ERROR, indicating that STREAMshould terminate with an error indication.

6. PUT(ADDRESS), indicating that ADDRESS is to be placed in the address field of the descriptor
STYPE.

The classes of characters for which actions are to be taken are given in FOR designations.
CONTI N and GOTQ(TABLE) provide information about the next table to use and are typicaly
represented by addresses in syntax table entries. STOP, STOPSH, and ERROR are type indicators used
to stop the streaming process.

SNABTB is used in pattern matching for ANY(CS), BREAK(CS), NOTANY(CS), and
SPAN(CS) . SNABTB is modified during execution by the macros CLERTB and PLUGTB (q.v.). The
other syntax tables are not modified.

Two representative syntax table descriptions follow. A complete list is givenin Appendix A.

BEG N | BLKTB
FOR(BLANK) GOTO(FRADTB)
FOR(ECS) PUT(ECSTYP) STOP
ELSE ERROR

END | BLKTB

BEG N VARBTB
FOR(ALPHANUMER! C, BREAK) CONTI N
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(Rl GHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR

END VARBTB

The syntax tables for the IBM System/360 implementation are generated from such descriptions
using a (SNOBOL4) program in which the character classes and the order of the internal character codes
are parameters. The use of some kind of automatic technique to generate the syntax tables is advisable,
both to ensure accuracy and because of the large amount of data involved.

5. Describing the Macros

This section explains the method of describing the macros. The instructions for implementing an
operation usually consist of a description of the operation’s function, figures indicating data relating to the
operation, and programming notes that contain details and references to other relevant information. The
figures consist of stylized representations of the various data objects and the fields within them.

5.1. Diagrammatic Representation of Data

The representation of adescriptor at LOCL isshown below. A, F, and V indicate the values of the
address, flag, and value fields.

LCC1 A F V

The representation of a specifier at LOC2 isshown below. A, F, V, O and L indicate the values
of the address, flag, value, offset, and length fields.

LOC2 A F Vv o L

Character strings have two representations depending on how many characters are relevant to the
description. The short representation of a string of L characters is shown below. C1 and CL are the
first and last characters, respectively. In this representation, the intermediate characters are indicated by
dots.

LOC3 Cl CL

The long representation of a string of L charactersat LOC4 is shown below. CJ and CJ+1 are
relevant characters in the interior of the string. The long representation is used when such interior
characters must be specified.

LoC4 la | ...] o o] ... [a |

The representation of a syntax table entry isshown below. A, T, and P indicate values of the next
table address, type indicator, and put field as specified by the PUT action.

LOCS A T P

Various values and expressions may occur in the fields of data objects. Fields are left blank when
their value is not used in an operation. In data objects that are changed by an operation, unchanged fields
are left blank. For example, if the figure below referred to a descriptor to be changed, the new value of the
address field would be A2, and no other fields would be changed.

A2

Letters are used as abbreviations to differentiate the values that may appear in a field. The seven
basic fields are indicated by the letters A, F, V, O, L, T,and P. Numerical suffixes (which may be
thought of as subscripts) are used as necessary to distinguish between values of the same type. Thus, for
example, Al, A32, and AN might be used to refer to addresses, F1 and F2 to flags, and so on. To
make further distinctions where appropriate, | and R are used to indicate integers and real numbers,
respectively.

5.2. Branch Points

Program labels are included in the argument lists of many macros. These addresses are points to
which control may be transferred, depending on data supplied to the macros. In general, some or all of the
branch points may be omitted in a macro call. An omitted branch point signifies that control is to pass to
the next macro in line if the condition corresponding to the omitted branch point is satisfied. For example
ACOVP is called in the following forms:

ACOWP DESCR1, DESCR2, GTLOC, EQLOC, LTLOC
ACOVWP DESCR1, DESCR2, GTLOC, EQLOC

ACOWP DESCR1, DESCR2, GTLOC

ACOWP DESCR1, DESCR2, GTLCC, , LTLOC
ACOWP DESCR1, DESCR2, , EQLOC, LTLOC
ACOVP DESCR1, DESCR2, , EQLOC

ACOWP DESCR1, DESCRZ, , , LTLOC

where GTLOC, EQLOC, and LTLOC are addresses to which ACOVP may branch. ACOMP is not called
with all three branch points omitted, since that is not a meaningful operation. Other macros such as SUM

(g.v.) are often called with all branch points omitted.

Implementation of the macros must take omission of branch points into consideration. Alternate
expansions, conditioned by the omission of branch points, may be used to generate more efficient code.

5.3. Abbreviations
Several abbreviations are used in the descriptions that follow. These are:

1. Disused for the addressing width of a descriptor. On the IBM System/360, the machine addressing
unit isone byte, and Diseight.

2. Sisused for the addressing width of a specifier; S = 2D.

3. CPDisused for the number of characters stored per descriptor.
4. | isused for (signed) integers.

5. Risused for real numbers.

6. Eisused for the address width of a syntax table entry.

7. Z is used to indicate the number of the last character in collating sequence. Characters are
““numbered’’’ from0to Z.

The data type codes | and R are defined in the SIL source program. The other codes are machine
dependent. Seethe COPY macro. by Rand | respectively. These symbols are defined in

5.4. Programming Notes

Programming notes are provided for some macro operations. The notes are intended to point out
special cases, indicate implementation pitfalls, and to provide information about conditions that can be
used to improve the efficiency of the implementation.

6. TheMacros

1. ACOWP (addresscomparison)

. ACOVP DESCR1, DESCR2, GTLOC, EQLOC, LTLOC

ACOWP is used to compare the address fields of two descriptors. The comparison is arithmetic with
Al and A2 being considered as signed integers. If Al > A2, transfer isto GTLOC. If Al = A2,
transferisto EQLCC. If Al < A2,transferisto LTLCC.

Data Input to ACOVP:

DESCRL | Al | | |

DEscRe [A | | |

Programming Notes:
1. Al and A2 may berelocatable addresses.

2. Seedso LCOVP, ACOVPC, AEQL, AEQLC, and AEQLI C.

2. ACOWPC (addresscomparison with constant)

ACOVPC DESCR, N, GTLCC, EQLOC, LTLOC

ACOWPC is used to compare the address field of a descriptor to a constant. The comparison is
arithmetic with A being considered as a signed integer. If A > N, transfer isto GTLCC. If A = N,
transferisto EQLCC. If A < N, transfer isto LTLOC.

Data Input to ACOVPC:

DESCR | A

Programming Notes:

1. Amay bearelocatable address.
2. Nisnever negative.

3. NisoftenO.

4. Seedso ACOMP, AEQL, AEQLC, and AEQLI C.

3. ADDLG (add to specifier length)

ADDLG SPEC, DESCR

ADDLGis used to add an integer to the length of a specifier.
Data Input to ADDLG

SPEC ‘ ‘ ‘ ‘ L

DESCR] | |

Data Altered by ADDLG

SPEC ‘ ‘ ‘ ‘ L+l

Programming Notes:

1. | isalways positive.

4. ADDSI B (add siblingto tree node)

ADDSI B DESCR1, DESCR2

ADDSI B is used to add atree node as a sibling to another node.
Data Input to ADDSI B:

DESCRL [A | | |
esre [| 2 | v |
AL+FATHER | A3 | F3 | w3 |
AL+RSIB | M | F4 | va |
A3+CODE | | v

Data Altered by ADDSI B:

AR+RSIB | M | R4 | va |
A+FATHER | A3 | F3 | w3 |
Al+RSIB | A2 [F2 | v2 |
A3+ODE | | IE

Programming Notes:
1. ADDSI Bisonly used by compilation procedures.
2. FATHER, RSI B, and CODE are symbols defined in the source program.

3. Seedso ADDSONand | NSERT.

5.

ADDSON (add son to tree node)

ADDSCON DESCR1, DESCR2

ADDSON is used to add a tree node as a son to another node.
Data Input to ADDSON:

DESCR1L | A | R | v
esre [| 2 | v |
AL+LSON | A3 [R | w3 |
AL+CODE | | v

Data Altered by ADDSON:

A+FATHER | AL | F1L | w1 |
AR+wRSIB | A3 | B | w |
A+LSIN [a2 | 2 | v |
AL+CODE | ‘ [+

Programming Notes:

1.

2.

ADDSON s only used by compilation procedures.

FATHER, LSONRSI B, and CODE are symbols defined in the source program.

Seealso ADDSI Band | NSERT.

ADJUST (compute adjusted address)

ADJUST DESCR1, DESCR2, DESCR3

ADJUST is used to adjust the address field of a descriptor.

-10-

Data Input to ADJUST:

DEscRe [M | | |
DESCR3 | A3 | ‘ |
A2 [m | | |

Data Altered by ADJUST:

DESCRL | A3+Ad | . .

Programming Notes:

1. A3 isawaysan addressinteger.

7. ADREAL (addreal numbers)

ADREAL DESCR1, DESCR2, DESCR3, FLOC, SLOC

ADREAL is used to add two real numbers. If the result is out of the range available for real numbers,
transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to ADREAL :

DEscR2e | R | F2 | v |

DESCR3 | R ‘ |

Data Altered by ADREAL :

DESCR1L | RR+RB | F2 | v2 |

Programming Notes:

1. Seedso DVREAL, EXREAL, MNREAL, MPREAL, and SBREAL.

8. AEQL (addressesequal test)

‘ AEQL DESCRL, DESCR2, NELOC, EQLCC |

AEQL is used to compare the address fields of two descriptors. The comparison is arithmetic with
Al and A2 being considered as signed integers: If Al = A2, transfer isto EQLOC. Otherwise transfer
isto NELCC.

-11-

Data Input to AEQL:

DESCRL | oA | |

DESCR2 | A ‘ |

Programming Notes:
1. Al and A2 may berelocatable addresses.

2. Seedso VEQL, AEQLC, LEQLC, AEQLI C, ACOWP, and ACOVPC.

9. AEQLC (addressequal to constant test)

‘ AEQLC DESCR, N, NELOC, EQLCC |

AEQLC is used to compare the address field of a descriptor to a constant. The comparison is
arithmetic with A being considered as a signed integer. If A = N, transfer isto EQLOC. Otherwise
transfer isto NELOC.

Data Input to AEQLC:

DESCR A

Programming Notes:

1. Amay bearelocatable address.
2. Nisnever negative.

3. NisoftenO.

4. Seedso LEQLC, AEQL, AEQLI C, ACOVP, and ACOMPC.

10. AEQLI C (addressequal to constant indirect test)

AEQLI C DESCR, N1, N2, NELOC, EQLCC |

AEQLI Cis used to compare an indirectly specified address field of a descriptor to a constant. The
comparison is arithmetic with Al being considered as a signed integer. If A2 = N2, transfer is to
EQLQOC. Otherwisetransfer isto NELOC.

-12-

Data Input to AEQLI C:

DESCR | AL . .

AL+N1 | A ‘ |

Programming Notes:

1. A2 may be arelocatable address.
2. N2 isnever negative.

3. N1 isaways zero.

4. Seedso AEQL, AEQLC, LEQLC, ACOWP, and ACOWPC.

11. APDSP (append specifier)

APDSP SPEC1, SPEC2

APDSP is used to append one specified string to another specified string.
Data Input to APDSP:

sect | AL | | | o [11]
spEc2 [M | | | @ | 2 |
A1+01 | a1 [... | cuw1 |
A2+Q2 | c1 | ... | co2 |

Data Altered by APDSP:

SPEC1 | A ‘ | o | L1+L2 |

AL+01 lc1 | ... Jawr | c [... | L2 |

Programming Notes:
1. If L1 = 0, C21lisplacedat A1+OL.

2. Thestoragefollowing ClL1 isalways adequate for C21. .. C2L2.

-13-

12. ARRAY (assemblearray of descriptors)

L ARRAY N |

ARRAY is used to assemble an array of descriptors.

Data Assembled by ARRAY:
L 0 0 0
L+(N-1)*D | 0 0 0

Programming Notes:

1. Allfieldsof all descriptors assembled by ARRAY must be zero when program execution begins.

13. BKSI ZE (get block size)

BKSI ZE DESCR1, DESCR2

BKSI ZE is used to determine the amount of storage occupied by a block or string structure. The flag
field of the descriptor at A distinguishes between string structures and blocks. If F contains the flag
STTL, then

F(V) =D* (4+[(V- 1)/ CPD+1])

where [V] isthe integer part of V and CPD is the number of characters stored per descriptor. The
constant 4 occurs because there are 4 descriptors (including the title) in a string structure in addition to the
string itself. The expression in brackets represents the number of descriptors required for a string of V
characters. If F doesnot containtheflag STTL, then F(V) = V+D.

Data Input to BKSI ZE:

DESCR2 | A | | |

A L [v |

Data Altered by BKS| ZE:

DESCRL | (VW | o | o |

Programming Notes:

1. Seeaso GETLTH.

-14 -

14. BKSPCE (backspacerecord)

BKSPCE DESCR |

BKSPCE is used to back space one record on the file associated with unit reference number 1 .
Data I nput to BKSPCE:

DESCR I

Programming Notes:
1. Seedso ENFI LEand REW ND.

2. Refer to Section 2.1 for adiscussion of unit reference numbers.

15. BRANCH (branch to program location)

BRANCH LOC, PROC |

BRANCH is used to alter the flow of program control by branching to LOC. If PROCisgiven, itis
the procedure in which LOC occurs. If PROCisomitted, LOCisin the current procedure.

Programming Notes:

1. Seedso PRCC.

16. BRANI C (branch indirect with offset constant)

BRANI C DESCR, N |

BRANI C is used to dter the flow of program control by branching indirectly to the operation at
LCC.

Data Input to BRANI C:

DEScR [A | | |

A+N | Loc | . |

Programming Notes:

1. Nisawayszero

-15-

17. BUFFER (assemble buffer of blank characters)

LOC BUFFER N

BUFFER s used to assemble astring of N blank characters.
Data Assembled by BUFFER:

LOC

Programming Notes:

1. All characters of the string assembled by BUFFER must be blank (not zero) when program execution
begins.

18. CHKVAL (check value)

CHKVAL DESCR1, DESCR2, SPEC, GTLOC, EQLOC, LTLOC
CHKVAL is used to compare an integer to the length of a specifier plus another integer. If L+12 >
I 1, transfer isto GILOC. If L+12 = |1, transfer isto EQLOC. If L+l12 < |1, transfer is to
LTLOC.

Data Input to CHKVAL :

SPEC ‘ ‘ ‘ | ¢
DESCRL |11 ‘ |
DESCR2 |12] ‘ |

Programming Notes:
1. 11, 12,and L arealways positive integers.

2. CHKVAL isused only in pattern matching.

19. CLERTB (clear syntaxtable)

CLERTB TABLE, KEY

CLERTB is used to set the indicator fields of al entries of a syntax table to aconstant. KEY may be
one of four values:

-16 -

CONTI' N
ERROR
STOP
STOPSH

The indicator field of each entry of TABLE issetto T where T istheindicator that corresponds to
thevalue of KEY.

Data Altered by CLERTB for ERROR, STOP, or STOPSH:

TABLE T

TABLE+Z*E | T |

Data Altered by CLERTB for CONTI N:

TABLE | TABLE [0 | .

TABLE+Z*E TABLE 0

Programming Notes:
1. SeeSection4.2.

2. Seedso PLUGTB.

20. COPY (copy fileinto assembly)

coPY FI LE |

COPY is used to copy a file of machine-dependent data into the source program. COPY occurs three
timesin the assembly:

COPY MDATA
COPY MLI NK
COPY PARVS

M.I NKand PARNVS are copied at the beginning of the SNOBOL4 assembly. MDATA is copied in the data
region.

MDATA is a file of machine-dependent data. It contains data used in the implementation of the
macros and for strings that depend on the character set of an individual machine or that represent other
problems that prevent a machine-independent representation. These are:

1. ALPHA, a string that consists of all characters arranged in the order of their internal numerical

-17 -

representation (collating sequence).

2. AMPST, a dtring consisting of a single ampersand, or whatever character is used to represent the
keyword operator in the source language.

3. COLSTR, astring of two characters consisting of a colon followed by a blank.

4. QISTR, a string consisting of a single quotation mark, or whatever character is used to represent a
guotation mark in the source language.

These strings of characters are pointed to by the specifiers ALPHSP, AMPSP, COLSP, and QTSP
respectively.

M.l NK is a file of entry points and external symbol names that describe linkages used to access
machine-language subroutines and 1/0O packages.

PARNMS is a file of machine-dependent constants (equivalences). It contains constants used in the
implementation of the macros and definitions of symbols. These are:

1. ALPHSZ, the number of characters in the character set for the machine. (ALPHSZ is 256 for the IBM
System/360.)

2. CPA, the number of characters per machine addressing unit. (CPAis1 for the IBM System/360, i.e.,
one character per byte.)

3. DESCR, the address width of a descriptor.

4. FNC, aflag used to identify function descriptors.

5. MARK, aflag used to identify descriptors that are marked titles.

6. PTR, aflag used to identify descriptors pointing into SNOBOL4 dynamic storage.

7. Sl ZLI M the value of the largest integer that can be stored in the value field of a descriptor.

8. SPEC, the address width of a specifier.

9. STTL, aflag used to identify descriptors that are titles of string structures.

10. TTL, aflag used to identify descriptors that are titles of blocks.

11. UNI TI , the number of the standard input unit. UNI TI is5 for the IBM System/360 implementation.

12. UNI TO the number of the standard print output unit. UNI TO is 6 for the IBM System/360
implementation.

13. UNI TP, the number of the standard punch output unit. UNI TP is 7 for the IBM System/360
implementation.

CSTACK and OSTACK, the current end old stack pointers, respectively, should be defined in one of
the COPY files. These pointers may either be in registers or in the address fields of descriptors, depending
on how the stack management macros are implemented (see PUSH and RCALL, e.g.). If these pointers
are implemented as registers, they should be defined in PARMS. If they are implemented in storage
locations, they should be defined in MDATA.

-18 -

Programming Notes:

1. COPY may be implemented in a variety of ways. COPY may, for example, simply expand into the
data required, depending on the value of its argument as given above.

2. Any of the COPY segments can be used to incorporate other machine-dependent data.

21. CPYPAT (copy pattern)

CPYPAT DESCR1, DESCR2, DESCR3, DESCR4, DESCR5, DESCR6

CPYPAT isused to copy apattern. First set

Rl = Al
R2 = A2
R3 = A6

where R1, R2,and R3 aretemporary locations. Sections of the pattern are copied for successive values
of Rl and R2. After copying each section, set

R3 = R3-(1+V7)*D
Then set

Rl = R1+(1+V7)*D

R2 = R2+(1+V7)*D

If R3 > 0, continue, copying the next section. Otherwise the operation is complete. The fina value of
R1 isinserted in the address field of DESCRL.

Thefunctions F1 and F2 are defined asfollows:

F1(X) =0 if X=0
F1(X) = X+A4 otherwise
F2(X) = A5 if X=0
F2(X) = X+A4 otherwise

-19-

Initial Data Input to CPYPAT:

cescr [AL | |
cesce [A2 | | |
s [A8 | | |
cescre [A4 | | |
cescrs [A5 | | |
cescrs [A6 | | |

Data Input to CPYPAT for Successive Values of R2:

R2+D | a7 | F7m | v]
R2+2D | A | o | w |
R2+3D | m | o | wvo |

Data Altered by CPYPAT for Successive Values of R1:

R1+D | a7 | F7m | v]
R1+2D | F1(A8) | o | F2(ve) |
R1+3D | A+A3 | 0 | Vo+A3 |

Additional Data Input for Successive Values of R2 if V7 = 3:

R2+4D | A0 [F0 | wvio |

Additional Data Altered for Successive Valuesof R1 if V3 = 7:

R1+4D | A0 | F10 | wvi0o |

Data Altered when Copying is Complete:

DESCRL [R | | |

-20-

22. DATE (get date)

DATE SPEC

DATE is used to obtain the current date. A character representation of the current date is placed in
BUFFER.

Data Altered by DATE:

SPEC |BUFFER| o | o | o L

BUFFER | a [... | «a

Programming Notes:
1. The choice of representation for the date is not important so far as the source language is concerned.
Thus

April 1, 1981
04/ 01/ 81
4:1:81

81. 092

are all acceptable.
2. BUFFERisloca to DATE and itsold contents may be overwritten by a subsequent use of DATE.
3. DATEisused only inthe SNOBOL4 DATE function.

4. Implementation of DATE, as such, isnot essential. Inthiscase, DATE should set the length of SPEC
to zero and do nothing else.

23. DECRA (decrement address)

DECRA DESCR, N |

DECRA is used to decrement the address field of adescriptor. Aisconsidered as a signed integer.
Data | nput to DECRA:

DESCR | A ‘ |

Data Altered by DECRA:

DESCR [AN] ‘ |

-21-

Programming Notes:

1. A maybe arelocatable address.
2. Nisaways positive.

3. Nisoftenlor D.

4. A- Nmay be negative.

5. Seedso | NCRA

24. DEQ. (descriptor equal test)

‘ DEQL DESCRL, DESCR2, NELOC, EQLCC |

DEQL is used to compare two descriptors. If A1 = A2, F1 = F2,and V1 = V2, transfer isto
EQLQOC. Otherwise transfer isto NELOC.

Data Input to DEQL:

DESCRL | A | F1 | w1 |

DESCR2. | A2 | P2 | w2 |

Programming Notes:

1. All fields of the two descriptors must be identical for transfer to EQLOC.

25. DESCR (assembledescriptor)

LOC DESCR AF, V|

DESCR assembl es a descriptor with specified address, flag, and value fields.
Data Assembled by DESCR:

LOC A F \%

Programming Notes:

1. Anyoradlof A F,and V may be omitted. A zero field must be assembled when the corresponding
argument is omitted.

-22-

26. DI VI DE (divideintegers)

Dl VI DE DESCR1, DESCR2, DESCR3, FLOC, SLCC

DI VI DE is used to divide one integer by another. Any remainder is discarded. That is, the result is
truncated, not rounded. If | = O, transferisto FLOC. Otherwisetransferisto SLCC.

Data Input to DI VI DE:

DESCR2 | A | F | v]

DESCR3 o] | |

Data Altered by DI VI DE:

DEscRt | Al | F | v |

Programming Notes:

1. Amay bearelocatable address.

27. DVREAL (dividereal numbers)

DVREAL DESCR1, DESCR2, DESCR3, FLOC, SLCC

DVREAL is used to divide one real number by another. If R3 = 0 or the result is out of the range
available for real numbers, transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to DVREAL:

DESCR2 | R | F2 | wv2 |

DESCR3 | B ‘ |

Data Altered by DVREAL :

DESCRL | RIB| F2 | v |

Programming Notes:

1. In addition to use in source-language arithmetic, DVREAL is used in the computation of statistics
published at the end of a SNOBOL4 run.

2. Seeaso ADREAL, EXREAL, MNREAL, MPREAL, and SBREAL.

-23-

28. END (end assembly)

END .

END is used to terminate assembly of the SNOBOL 4 system. It occurs only once and is the last card
of the assembly.

29. ENDEX (end execution of SNOBOL4 run)

ENDEX DESCR |

ENDEX is used to terminate execution of a SNOBOL4 run. ENDEX is the last instruction executed
and is responsible for returning properly to the environment that initiated the SNOBOL4 run. If | is
nonzero, a post-mortem dump of user core should be given.

Data Input to ENDEX:

DESCR I

Programming Notes:

1. If adumpisnot given, the keyword &ABEND will not have its specified effect. Nothing else will be
affected.

2. OnthelBM System/360, if | isnonzero, an abend dump is given with auser code of | .

3. Seedso INIT.

30. ENFILE (writeend of file)

ENFI LE DESCR |

ENFI LE is used to write an end-of-file on (close) the file associated with unit reference number | .
Data Input to ENFI LE:

DESCR I ‘ .

Programming Notes:
1. Seedso BKSPCE and REW ND.

2. Refer to Section 2.1 for adiscussion of unit reference numbers.

-24-

31. EQU (symbol equivalence)

| syBOL EQU N |

EQUisused to assign, at assembly time, the value of Nto SYMBOL.

32. EXPI NT (exponentiateintegers)

EXPI NT DESCR1, DESCR2, DESCR3, FLOC, SLCC

EXPI NT is used to raise an integer to an integer power. If |1 = 0and | 2 isnot positive, or if the
result is out of the range available for integers, transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to EXPI NT:

DESCR2 | 11 | F | v]

DESCR3 |12] ‘ |

Data Altered by EXPI NT:

DESCRL liz==12 | F | v |

33. EXREAL (exponentiate real numbers)

EXREAL DESCR1, DESCR2, DESCR3, FLOC, SLOC

EXREAL is used to raise area number to areal power. If the result is not area number or is out of
the range available for real numbers, transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to EXREAL:

DESCR2 | R | F | v |

DESCR3 | R ‘ |

Data Altered by EXREAL :

DESCRL |R*RR[F | v |

-25-

34. FORMAT (assembleformat string)

LOC FORVAT 'Cl...CL |

FORMAT is used to assemble the characters of aformat.
Data Assembled by FORMAT:

LGoC Cl CL

Programming Notes:

1. The characters assembled by FORMAT are treated as an ‘‘‘undigested’’’ format by FORTRAN 1V
routines.

35. FSHRTN (foreshorten specifier)

FSHRTN SPEC, N |

FSHRTN s used to exclude initial characters from a string specification.
Data Input to FSHRTN:

SPEC | ‘ ‘ | o | L |

Data Altered by FSHRTN:
SPEC ‘ ‘ ‘ | oN | L-N |

Programming Notes:
1. L- Nisnever negative.

2. Seedso RENSP.

36. GETAC (get addresswith offset constant)

CETAC DESCR1, DESCR2, N.

CGETAC s used to get an address field with an offset constant.

-26-

Data Input to GETAC:

DEscRe [M | | |

A2+N A ‘ |

Data Altered by GETAC:

DESCR1 | A] ‘ |

Programming Notes:
1. Nmay be negative.

2. Seeaso PUTAC, GETDC, and PUTDC.

37. CGETBAL (get parenthesisbalanced string)

GETBAL SPEC, DESCR, FLCC, SLOC

CGETBAL is used to get the specification of a balanced substring. The string starting at CL+1 and
ending a& CL+N is examined to determine the shortest balanced substring CL+1,...,CL+J. Jis
determined according to the following rules:

If CL+1 isnot aparenthesis, then J =1.

If CL+1 is a left parenthesis, then J is the least integer such that CL+1... CL+J is balanced with
respect to parentheses in the usual algebraic sense.

If CL+1 isaright parenthesis, or if no such balanced string exists, transfer isto FLOC. Otherwise SPEC
ismodified as indicated and transfer isto SLOC.

Data Input to GETBAL:

SPEC A] | | o L
DESCR [N] | |
A+O la [...] a Ja+x] ... [a+N]

Data Altered by GETBAL:

SPEC A] ‘ | o [i+ |

-27 -

38. CGETD (get descriptor)

GETD DESCR1, DESCR2, DESCR3

GETDis used to get a descriptor.
Data Input to GETD:

DESCR2 | A ‘ .
DESCR3 | A3 | ‘ |
A2+A3 A | F | v]

Data Altered by GETD:

DESCRL | A | F | v]

Programming Notes:

1. Seedso GETDC, PUTD, and PUTDC.

39. GETDC (get descriptor with offset constant)

GETDC DESCRL, DESCR2, N |

CGETDC is used to get a descriptor with an offset constant.
Data Input to GETDC:

DEscRe [M | | |

RN A | F | v]

Data Altered by GETDC:

DESCRL | A | F | v]

Programming Notes:

1. Seedso CETD, PUTDC, and PUTD.

-28-

40. CETLG (get length of specifier)

GETLG DESCR, SPEC

CETLGis used to get the length of a specifier.
Data Input to GETLG

SPEC ‘ ‘ ‘ ‘ L

Data Altered by GETLG

DESCR | L | o | o]

Programming Notes:

1. Seedso PUTLG

41. CETLTH (get length for string structure)

GETLTH DESCR1, DESCR2 .

CGETLTH is used to determine the amount of storage required for a string structure. The amount of
storage is given by the formula

F(L) =D*(3+[(L- 1)/ CPD+1])

where [L] istheinteger part of L and CPD is the numbers of characters stored per descriptor. The
constant 3 accounts for the three descriptors in a string structure in addition to the string itself. The
expression in brackets represents the number of descriptors required for astring of L characters.

Data lnput to GETLTH:

DESCR2 L ‘ |

Data Altered by GETLTH:

DESCRL | F(L) | o [o |

Programming Notes:

1. Seedso BKSI ZE.

-29-

42. CETSI Z (get size)

GETSI Z DESCR1, DESCR2

GETSI Z isused to get the size from the value field of atitle descriptor.
Data lnput to GETSI Z:

DEscRe [A | | |

A | | v]

Data Altered by GETSI Z:

DescRt | v | o | o |

Programming Notes:

1. Seedso SETSI Z.

43. CGETSPC (get specifier with constant offset)

GETSPC SPEC, DESCR, N |

CGETSPCisused to get a specifier.
Data Input to GETSPC.

DESCR | A ‘ |

AN [A] F] v | o |

Data Altered by GETSPC:

sec | A | F | v [o |

Programming Notes:

1. Seedso PUTSPC.

-30-

44. | NCRA (increment address)

I NCRA DESCR, N

| NCRA is used to increment the address field of a descriptor.
Data Input to | NCRA:

DEScR [A | | |

Data Altered by | NCRA:

DESCR [AN] | |

Programming Notes:

1. Amay be areocatable address.
2. Aisnever negative.

3. Nisaways positive.

4. Nisoftenlor D

5. Seedso DECRAand | NCRV.

45. | NCRV (increment valuefield)

‘ | NCRV DESCR, N |

I NCRV is used to increment the value field of a descriptor.

(nonnegative) integer.
Data Input to | NCRV:

DESCR ‘ ‘ | |

Data Altered by | NCRV:

DESCR ‘ ‘ [I+N]

-31-

is considered as an unsigned

Programming Notes:
1. Nisaways positive.
2. Nisoften 1.

3. Seedso | NCRA

46. INIT (initialize SNOBOLA4run)

INIT |

I NI TisusedtoinitiadizeaSNOBOL4 run. | NI T isthefirst instruction executed and is responsible
for performing any initialization necessary. The operation is machine and system dependent. Typicaly,
I NI T sets program masks and the values of vertain registers.

In addition to any initialization required for a particular system and machine, | NI T also performs
the following initialization for the SNOBOL4 system. Dynamic storage isinitialized. The address fields of
FRSGPT and HDSGPT are set to point to the first descriptor in dynamic storage. The address field of
TLSGP1 is set to the first descriptor past the end of dynamic storage. Space for dynamic storage may be
preallocated or obtained from the operating system by | NI T. The timer isinitialized for subsequent use
by the MSTI ME macro (q.v.).

Programming Notes:

1. Seeadso ENDEX

47. 1 NSERT (insert nodein tree)

| NSERT DESCR1, DESCR2

I NSERT is used to insert atree node above another node.
Data Input to | NSERT:

DESCRL I A [| w1
Descre [M | R | w2 |
AL+FATHER | A3 | R | w3 |
A3+LSON [A | F4 | va |
A2+OCDE | |]

-32-

Data Altered by | NSERT:

AL+FATHER | A2 | F2 | v2 |
M+RSIB | A2 [F2 | v2 |
A+FATHER | A3 | F3 | w3 |
AR+tsN | AL [FL | w1]
A2+CCDE | | IE

Programming Notes:

1. Since the fields of the descriptor at A1+FATHER are used in the data to be atered, care should be
taken not to modify this descriptor until its former values have been used.

2. | NSERT isonly used by compilation procedures.
3. FATHER, LSON, RSI B, and CODE are symbols defined in the source program.

4, Seedso ADDSI Band ADDSON.

48. | NTRL (convert integer toreal number)

| NTRL DESCRL, DESCR? |

I NTRL is used to convert a (signed) integer to a real number. R(1) is the real number
correspondingto | .

Data Input to | NTRL:

oescre [1 | |]

Data Altered by | NTRL:

DESCRL | RI) | o | R |

Programming Notes:

1. Risasymbol defined in the source program and is the code for the real datatype.

-33-

49. | NTSPC (convert integer to specifier)

| NTSPC SPEC, DESCR |

I NTSPCis used to convert a (signed) integer to a specified string.
Data Input to | NTSPC:

DEScR [1| | |

Data Altered by | NTSPC:

SPEC |BFFER| o | o | o L

BUFFER+tO | c | ... | «

Programming Notes:

1. Cl...CL should be a ‘“‘‘normalized’’’ string corresponding to the integer |. That is, it should
contain no leading zeroes and should begin with aminussignif | isnegative.

2. BUFFERIisloca to | NTSPC and its contents may be overwritten by a subsequent use of | NTSPC.

3. Seedso SPCI NT.

50. | STACK (initialize stack)

| STACK |

| STACK is used to initialize the system stack.
Data Altered by | STACK:

OSTACK | o | ‘ |

CSTACK | STACK | ‘ |

Programming Notes:
1. STACKisaprogram symbol whose value is the address of the first descriptor of the system stack.

2. Seedso PSTACK, RCALL, and RRTURN.

51. LCOWP (length comparison)

LCOWP SPEC1, SPEC2, GITLCC, EQLCC, LTLCC

LCOWP is used to compare the lengths of two specifiers. If L1 > L2, transfer isto GTLOC. If
L1 = L2, transferisto EQLOC. If L1 < L2,transferisto LTLOC.

Data Input to L COVP:

SPEC1 ‘ ‘ ‘ ‘ | L1 |

SPEC2 ‘ ‘ ‘ ‘ | L2 |

Programming Notes:

1. Seedso ACOWP, RCOWP,and LEQ.C.

52. LEQLC (length equal to constant test)

‘ LEQLC SPEC, N, NELOC, EQLCC |

LEQLCis used to compare the length of a specifier to aconstant. If L = N, transfer isto EQLCC.
Otherwise transfer isto NELOC.

Data Input to LEQLC:

SPEC ‘ ‘ L

Programming Notes:
1. L and Narenever negative.

2. Seedso LCOWP, AEQLC, and AEQLI C.

53. LEXCMP (lexical comparison of strings)

‘ LEXCMP SPEC1, SPEC2, GTLOC, EQLOC, LTLOC |

LEXCWMP is used to compare two strings lexicographically (i.e. according to their alphabetical
ordering). If Cl11...CIN1 < C(C21...C2M transfer is to GILOC. If Cl1...CIN1L =
C21. .. C2Mtransfer isto EQLOC. If Cl11...CLN1 > C21...C2M transferisto LTLQOC.

-35-

Data Input to LEXCMP:

SPECL | AL ‘ | oo | N |
sPEC2 | M | | @ [™ |
AL+0L | cu1 | caN |
A2+C2 | c21 | v |

Programming Notes:

1. The lexicographical ordering is machine dependent and is determined by the numerical order of the
internal representation of the characters for a particular machine.

2. A string that is an initial substring of another string is lexicographically less than that string. That is

ABCislessthan ABCA.

3. Thenull (zero-length) string is lexicographically less than any other string.

4. Two strings are equal if and only if they are of the same length and are identical character by

character.

5. By far the most frequent use of LEXCVP isto determine whether two strings are the same or different.
In these cases GTLOC and LTLOC will specify the same location or both be omitted. Because of the
frequency of such use, it is desirable to handle this case specialy, since a test for equality usually can be

performed more efficiently than the general test.

54. LHERE (location here)

LCC LHERE

LHERE is used to establish the equivalence of LOC asthe location of the next program instruction.

Programming Notes:

1. LHEREisequivaent tothefamiliar EQU *. Similarly

LOCLHERE
oP

isequivalent to
LOCOP

-36-

55. LI NK (link to external function)

LI NK DESCR1, DESCR2, DESCR3, DESCR4, FLCC, SLOC

LI NK isused to link to an external function. A2 is a pointer to an argument list of N descriptors.
A4 is the address of the external function to be called. V1 is the date type expected for the resulting
value. The returned value is placed in DESCRL. If the external function signals failure, transfer is to
FLCC. Otherwise transfer isto SLOC.

Data Input to L1 NK:

cescr1 | | BV
cescre [R2 | | |
s [N | | |
cescre [A | | |

Data Altered by LI NK:

DESCRL | A | F | v]

Programming Notes:
1. LI NKisasystem-dependent operation.
2. LI NKneed not beimplemented if LOADisnot. Inthiscase, LI NK should branchto | NTR10.

3. Seedso LOADand UNLQOAD.

56. LINKOR (link ‘““‘or’"’ fields of pattern nodes)

LI NKOR DESCR1, DESCR2 .

L1 NKOR links through *“*or’’ (alternative) fields of pattern nodes until the end, indicated by a zero
field, isreached. Thiszerofieldisreplaced by | .

-37-

Data Input to LI NKOR:

DESCRL A] | |
DEscRe [1| | |
A+2D 1] ‘ .
A2DH L [12] ‘ |
AR2DHN [0 | ‘ |

Data Altered by L1 NKOR:

A2DHN [1] ‘ |

57. LQOAD (load external function)

LOAD DESCR, SPEC1, SPEC2, FLOC, SLCC

LOAD is used to load an external function. C11... Cl1L1 isthe name of the external function to
be loaded from alibrary. C21... C2L2 isthe name of thelibrary. A3 isthe address of the entry point.
If the external function isloaded, transfer isto SLOC. Otherwise transfer isto FLOC.

Data Input to LOAD:

spect [A | | | a | u |
spEc2 [M | | | @ | 2 |
AL+01 | c1 [... | c1 |
A2+C2 | c1 | ... | c2 |

Data Altered by LQAD:

DESCR a3 | |

-38-

Programming Notes:
1. LOADisasystem-dependent operation.

2. LQOAD need not be implemented as such. If it is not, the built-in function LOAD will not be available,
and an error comment should be generated by branching to UNDF.

3. On the IBM System/360, LQAD uses the OS macro LOAD to bring an externa function from the
library whose DDNAME is specified by C21... C2L2.

4. Seealso LI NKand UNLOAD.

58. LOCAPT (locate attribute pair by type)

LOCAPT DESCR1, DESCR2, DESCR3, FLOC, SLCC

LOCAPT is used to locate the ‘*‘type’’ descriptor of a descriptor pair on an attribute list.
Descriptors on an attribute list are in *‘‘type-value'’’’ pairs. Odd-numbered descriptors are ‘‘‘type’”’
descriptors. The list starting at A+D is searched, comparing descriptors at A+D, A+3D, ... for the first
descriptor whose value is equal to the value of DESCR3. If a descriptor equal to DESCRS3 is not found,
transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to LOCAPT:

DESCR2 I A | F | v |
DESCR3 s [B [v |
A | | | _2kD |
A+D | A1 | F1 | vi1 |
A+D+21 *D A3 F3 V3

A*2K*D | ‘ ‘ |

Data Altered by LOCAPT:

DESCR1L a2 D] F | v |

-39-

Programming Notes:
1. Notethat the address of DESCR1 is set to one descriptor less then the descriptor that islocated.

2. Seedso LOCAPV.

59. LOCAPV (locate attribute pair by value)

LOCAPV DESCR1, DESCR2, DESCR3, FLOC, SLCC

LOCAPV is used to locate the ‘‘‘value’’’ descriptor of a descriptor pair on an attribute list.
Descriptors on an attribute list are in **‘type-value’’’ pairs. Even-numbered descriptors are ‘*‘value’”’
descriptors. The list starting at A+D is searched, comparing descriptors a8 A+2D, A+4D, ... for the first
descriptor whose value is equal to the value of DESCR3. If a descriptor equal to DESCRS3 is not found,
transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to LOCAPV:

DESCR2 I A | F | v |
DESCR3 s [B [v |
A | | | _2kD |
A+2D | A2 | F12 | vi2 |
A+2D+2] *D A3 F3 V3

A*2K*D | ‘ ‘ |

Data Altered by LOCAPV:

DESCR1L a2 D] F | v |

Programming Notes:
1. Notethat the address of DESCR1 is set to two descriptors less than the descriptor that islocated.

2. Seedso LOCAPT.

-40 -

60. LOCSP (locate specifier to string)

LOCSP SPEC, DESCR |

LOCSP is used to obtain a specifier to a string given in a string structure. CPD is the number of
characters per descriptor.

Data Input to LOCSP:

DESCR I A | F | v |

A | |]

Data Altered by LOCSPif A # O

SPEC . A | F | v [|#cp]| 1 |

Data Altered by LOCSPif A = O
SPEC | | | | [o |

Programming Notes:

1. If A = O thevaue of DESCR represents the null (zero-length) string and is handled as a special
case asindicated. The other fieldsof SPEC are unchanged in this case.

61. LVALUE (get least length value)

LVALUE DESCR1, DESCR2

LVALUE is used to get the least value of address fields in a chain of pattern nodes. The address field
of DESCR1 issetto | where

| =nin(l10,...,1K

-41 -

Data Input to LVAL UE:

vesre [A] | |
A+2D [N] | |
A+3D 1o | | |
ANL+2D [N2] ‘ .
AfNL+3D | 11 | ‘ |
AtNK#2D | 0 | ‘ .
AfNK+3D [1K] ‘ .

Data Altered by LVALUE:

DEscRt | 1 | o | o |

Programming Notes:
1. 10,..,l Kareal nonnegative.

2. Aisnever zero, but N1 may be.

62. MAKNOD (make pattern node)

MAKNCD DESCR1, DESCR2, DESCR3, DESCR4, DESCR5, DESCR6

MAKNOD is used to make a node for a pattern. DESCR6 may be omitted. If it is, one less
descriptor is modified, but the two forms are otherwise the same.

Data Input to MAKNCD:

DEscRe | M | R | v2 |
DESCR3 | A3 | ‘ |
cescRe [A | |
DEscRs | A | F5 | V5 |

-42-

Additional Data Input if DESCR6 is Given:

DESCRé | A6 | F6 | V6 |

Data Altered by MAKNOD:

e [| m | Ve |
N Y R B
20 [| |
o A | |

Additional Data Altered if DESCR6 is Given:

A2+4D | m | F6 | Ve |

Programming Notes:

1. As indicated, there are two forms of MAKNOD. If DESCR6 is given, an additional descriptor if
modified, but otherwise the two forms are the same.

2. DESCR1 must be changed last, since DESCR6 may be the same descriptor as DESCR1.

3. MAKNODis used only for constructing patterns.

63. MNREAL (minusreal number)

M\REAL DESCR1, DESCR2

MNREAL is used to change the sign of areal number.
Data Input to MNREAL :

DESCR2 | R | F | v]

Data Altered by MNREAL :

DEscRt | -R | F | v |

Programming Notes:
1. Rmay be negative.

2. Seeaso MNSI NT, ADREAL, DVREAL, EXREAL, MPREAL, and SBREAL.

-43-

64. MNSI NT (minusinteger)

MNSI NT DESCR1, DESCR2, FLOC, SLCC

IMNSI NT is used to change the sign of an integer. If -1 exceeds the maximum integer, transfer isto
FLCC. Otherwise transfer isto SLOC.

Data Input to MNSI NT:

DEsScR2 | I | F | v]

Data Altered by MNSI NT:

pescrt | -1 | F | v |

Programming Notes:
1. | may benegative.

2. Seedso MNREAL.

65. MOVA (move address)

MOVA DESCR1, DESCR2

MOVA is used to move an address field from one descriptor to another.
Data Input to MOVA:

DESCR2 | A ‘ |

Data Altered by MOVA:

DESCR1 | A] ‘ |

Programming Notes:

1. Seedso MOVDand MOVV.

66. MOVBLK (move block of descriptors)

MOVBLK DESCR1, DESCR2, DESCR3

MOVBLK is used to move (copy) a block of descriptors.
Data Input to MOVBLK:

DESCR1L | A ‘ |
DESCR2 o | |
DESCR3 | DN | ‘ |
A2+D | A1 | F21 | v21 |
AR+HDN | AN | F2N | w2N |

Data Altered by MOVBLK:

AL+D | A1 [P21 | wver |

AL+H(D*N) [A2N F2N V2N

Programming Notes:
1. Notethat the descriptor at Al isnot altered.

2. The areainto which the move is made may overlap the area from which the move is made. This only
occurswhen Al islessthan A2. Care must be taken to handle this case correctly.

67. MOVD (movedescriptor)

MOVD DESCR1, DESCR2

MOVD is used to move (copy) adescriptor from one location to another.

-45-

Data Input to MOVD:

besce | A | F | v |

Data Altered by MOVD:

DEscRt | A | F | v |

Programming Notes:

1. Seeaso MOVAand MOWV.

68. MOVDI C (move descriptor indirect with constant offset)

MOVDI C DESCR1, N1, DESCR2, N2 .

MOVDI Cis used to move adescriptor that isindirectly specified with an offset constant.

Data Input to MOVDI C.

DESCR1 | AL | ‘ |
DESCR2 | A] ‘ |
A2+N2 I A | F | v |

Data Altered by MOVDI C:

ANl | A [F | v]

Programming Notes:

1. Seedso MOVD, GETDC, and PUTDC.

69. MOW (move valuefield)

MOWV DESCR1, DESCR2

MOWV is used to move a value field from one descriptor to another.
Data Input to MOVV:

DESCR2 V

- 46 -

Data Altered by MOVV:

DESCR1 \%

Programming Notes:

1. Seedso MOVAand MOVD.

70. MPREAL (multiply real numbers)

VMPREAL DESCR1, DESCR2, DESCR3, FLOC, SLOC

MPREAL is used to multiply two real numbers. If the result is out of the range available for real
numbers, transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to MPREAL :

DEScR2 | R | F2 | v |

DESCR3 | R ‘ |

Data Altered by MPREAL :

DESCR1L | PR3 | F2 | V2|

Programming Notes:

1. Seeadso ADREAL, DVREAL, EXREAL, MNREAL, and SBREAL.

71. MSTI ME (get millisecond time)

MBTI VE DESCR |

MSTI ME is used to get the millisecond time.
Data Altered by MSTI ME:

DESCR TI VE 0 0

=47 -

Programming Notes:

1. The origin with respect to which the time is obtained is not important. The SNOBOL4 system deals
only with differences in times.

2. Thetime units should be milliseconds, but accuracy is not critical.

3. MSTI ME is used in program tracing, the SNOBOL4 TI ME function, and in statistics printed upon
termination of a SNOBOL4 run.

4. Itisnot critically important that MSTI ME be implemented as such. If it is not, the address field of
DESCR should be set to zero also.

5. Seeaso INIT.

72. MULT (multiply integers)

MJLT DESCR1, DESCR2, DESCR3, FLOC, SLCC

MULT is used to multiply two integers. In the event of overflow, transfer isto FLOC. Otherwise,
transfer isto SLCC.

Data lnput to MULT:

DEscRz | 12 | F2 | v2 |

DESCR3 BE ‘ |

Data Altered by MULT:

DESCRL 12213 [Fr2 | v2 |

Programming Notes:

1. The test for success and failure is used in only two calls of this macro. Hence the code to make the
check is not needed in most cases.

2. DESCR1 and DESCRZ? are often the same.

3. Seedso MULTCand DI VI DE.

-48-

73. MULTC (multiply address by constant)

MILTC DESCR1, DESCR2, N

MULTC isused to multiply an integer by a constant.
Data Input to MULTC:

pesce [v | []

Data Altered by MULTC:

DESCRL | I*N | o | o |

Programming Notes:
1. | *Nnever exceeds the range available for integers.
2. DESCR1 and DESCR2 are often the same.

3. Nisoften D, which typicaly may be implemented by a, or simply by no operation if Dis 1 for a
particular machine.

4, Seealso MULT.

74. ORDVST (order variable storage)

ORDVST |

ORDVST is used to aphabetically order variables in SNOBOL4 dynamic storage. Variables are
organized in a number of bins, each bin containing a linked list of variables as shown below.
OBEND = OBSTRT+(OBSI Z- 1) * D, where OBSI Z is the number of bins and is defined in the source
program.

Bins of Variables:

oBSTRT [Al | | |
OBSTRT+D | A2 | ‘ .
OBEND AN

The addresses Al, A2, .., AN point to the first variable in each bin. A zero vaue for any of these
addresses indicates there are no variables in that bin. Within each bin, variables are linked together.

-49-

Relevant Parts of aVariable:

A | | [t]
A+3*D | Al | ‘ |
A+4+D la | ... | ...]

L is the length of the string. The string itself begins at A+4* D and occupies as many descriptor
locations as are necessary. Al isalink to the next variable in the bin. A zero value of Al indicates the
end of the chain for that bin.

Programming Notes:

1. ORDVST isused only in ordering variables for a programmer-regquested post-mortem dump of variable
storage. ORDVST need not be implemented as such, but may simply perform no operation. In this case,
the post-mortem dump will not be alphabetized, but will be otherwise correct.

2. If ORDVST isimplemented, it is easiest to put all variables in one long chain starting at OBSTRT.
The address fields of the descriptors OBSTRT+D,...,OBSTRT+(OBSI Z- 1) * D should then be set to zero.

3. Since dynamic storage may contain many variables, some care must be taken to assure that the sorting
procedure is not excessively ow. Variables whose values are the null string (zero address field and value
field containing the program symbol S) should be omitted from the sort.

4. Since any character may appear in a string, the value of | must be used to determine the length of the
string in a variable — characters following the string in the last descriptor are undefined.

75. QUTPUT (output record)

QUTPUT DESCR, FORMAT, (DESCR1, . . ., DESCRN) .

OUTPUT is used to output a list of items according to FORMAT. The output is put on the file
associated with unit reference number | . Theformat C1. .. CL may specify literals and the conversion
of integers and real numbers given in the address fields Al,...,AN.

-B50 -

Data Input to CUTPUT:

DESCR L] ‘ .
FORMAT | a [... | a |
DESCR1L | A ‘ |
DESCRN AN

Programming Notes:

1. Seedso STPRNT.

76. PLUGTB (plugsyntax table)

PLUGTB TABLE, KEY, SPEC

PLUGTB is used to set selected indicator fields in the entries of a syntax table to a constant. KEY
may be one of four values:

CONTI' N
ERROR
STOP
STOPSH

The indicator fields of entries correspondingto C1, ..., CL aresetto T where T isthe indicator that
corresponds to the value of KEY.

Data Input to PLUGTB:

SPEC | A] ‘ | o L

A+O | a [... | a |

Data Altered by PLUGTB for ERROR, STOP, or STOPSH:

TABLE+E*CL | T |

TABLE+E* CL T

-51-

Data Altered by PLUGTB for CONTI N:

TABLE+E* C1 TABLE 0

TABLE+E* CL TABLE 0

Programming Notes:
1. SeeSection4.2.

2. Seedso CLERTB.

77. POP (pop descriptorsfrom stack)

POP (DESCRL, . . ., DESCRN) |

POP is used to pop alist of descriptors off the system stack.
Data Input to POP:

CSTACK A ‘ |
A | A | R | v |
AD(NL) | AN | FN | W |

Data Altered by POP:

CSTACK | A (ND) | ‘ |
DESCR1L | A | R | v |
DESCRN AN FN WN

-52-

Programming Notes:

1. If AA-(N*D) < STACK, stack underflow occurs. This condition indicates a programming error in
the implementation of the macro language. An appropriate diagnostic message indicating an error may be
obtained by transferring to the program location | NTR10 if the condition is detected.

78. PROC (procedureentry)

LOCL PROC Loc2 |

PRCOC is used to identify a procedure entry point. LOC2 may be omitted, in which case LOCL isthe
primary procedure entry point. If LOC2 isgiven, LOCL isa secondary entry point in the procedure with
primary entry point LOC2.

Programming Notes:

1. Procedure entry points are referred to by RCALL, BRANI C, and BRANCH (in its two-argument
form).

2. In most implementations, PROC has no functional use and may be implemented as LHERE. For
machines that have a severely limited program basing range (such as the IBM System/360), PROC may be
used to perform required basing operations.

79. PSTACK (post stack position)

PSTACK DESCR |

PSTACK is used to post the current stack position.
Data Input to PSTACK:

csTAk [A] ‘ |

Data Altered by PSTACK:

DESR | AD | o | o |

Programming Notes:

1. Seedso | STACK.

-B3-

80. PUSH (push descriptorsonto stack)

PUSH (DESCRY, . . ., DESCRN) |

PUSH is used to push alist of descriptors onto the system stack.
Data Input to PUSH:

CSTACK | A | ‘ .
DESCRL | A [| w1]
DESCRN AN [RN | W]

Data Altered by PUSH:

CSTACK [AH(D'N) | | |
A+D | A | R | v |
A+(D*N) | AN FN VN

Programming Notes:

1. If AF(D*N) > STACK+STSI ZE, stack overflow occurs. Transfer should be made to the program
location OVER, which will result in an appropriate error termination.

2. Seedso SPUSH, POP,and SPOP.

81. PUTAC (put addresswith offset constant)

PUTAC DESCRIL, N, DESCR? |

PUTAC is used to put an address field into a descriptor located at a constant offset.

Data Input to PUTAC:

DESCRL | AL . .

DESCR2 | A ‘ |

Data Altered by PUTAC:

AL+N [A2] | |

Programming Notes:

1. Seedso GETAC, PUTVC, PUTD, and PUTDC.

82. PUTD (put descriptor)

PUTD DESCR1, DESCR2, DESCR3

PUTD is used to put a descriptor.
Data Input to PUTD:

DESCR1L | A ‘ |
DESCR2 o | |
DESCR3 A | F | v]

Data Altered by PUTD:

a2 [A | F [v |

Programming Notes:

1. Seedso PUTDC, PUTAC, PUTVC, and GETD.

83. PUTDC (put descriptor with constant offset)

PUTDC DESCRL, N, DESCR? |

PUTDC is used to put a descriptor at alocation with a constant offset.

-55-

Data Input to PUTDC:

DESCRL | AL

DESCR2 A Vv
Data Altered by PUTDC:

AL+N | A] Vv

Programming Notes:

1. Seedso PUTD, PUTAC, PUTVC,and GETD.

84. PUTLG (put specifier length)

PUTLG SPEC, DESCR

PUTLGis used to put a length into a specifier.

Data Input to PUTLG

DESCR L]

Data Altered by PUTLG

SPEC ‘ ‘

Programming Notes:
1. | isawaysnonnegative.

2. Seedso GETLG

85. PUTSPC (put specifier with offset constant)

PUTSPC DESCR, N, SPEC .

PUTSPC s used to put a specifier.

-56-

Data Input to PUTSPC:

DESCR | AL . .

sec | A | F [v | o | Lo |

Data Altered by PUTSPC.

AN [A | F | v | o | L]

Programming Notes:

1. Seedso GETSPC.

86. PUTVC (put valuefield with offset constant)

PUTVC DESCRL, N, DESCR? |

PUTVC isused to put avalue field into a descriptor at alocation with a constant offset.
Data Input to PUTVC:

DEscRL [A | | |

DESCR2 ‘ ‘ | v |

Data Altered by PUTVC:

A+N ‘ ‘ | v |

Programming Notes:

1. Seedso PUTAC, PUTDC, and PUTD.

87. RCALL (recursivecall)

RCALL DESCR, PROC, (DESCRY, . . ., DESCRN), (LOCL, ..., Lo |

RCALL is used to perform arecursive call. DESCR is the descriptor that receives the value upon
return from the call. PROC is the procedure being called. DESCRL,...,.DESCRN are descriptors whose
values are passed to PROC. LOC1,...,LOCMare locations to transfer to upon return according to the return
exit signaled. The old stack pointer (AO) is saved on the stack, the current stack pointer becomes the old
stack pointer, and a new current stack pointer is generated as indicated. The return location LOCis saved
on the stack so that the return can be properly made. The values of the arguments DESCRL,...,DESCRN

-57 -

are placed on the stack. Note that their order is the opposite of the order that would be obtained by using
PUSH.

At the return location LOC, code similar to that shown should be assembled. OP represents an
instruction that stores the value returned by PROCin DESCR.

Data Input to RCALL:

CSTACK A ‘ |
OSTACK [A0 | ‘ |
DESCRL | A | R | v |
DESCRN AN [RN | W]

Data Altered by RCALL:

A+D | Ao | o | o |
A+2D [tc | o [o |
A+3D | AN | AN | W |
mDr(2+N [a [R [w1
CSTACK [A+(2+N)*D | ‘ .
OSTACK A] ‘ .

Return Code at LOC:

LOC cP DESCR1
BRANCH LCC1
BRANCH LOCM

- 58 -

Programming Notes:

1. RCALL and RRTURN are used in combination, and their relation to each other must be thoroughly
understood in order to implement them correctly.

2. Ordinarily OPisaninstruction to storethe value returned by RRTURN.

3. DESCR sometimes is omitted. In this case, any value returned by RRTURN isignored and OP should
perform no operation.

4. (DESCR1, ..., DESCRN) sometimesis entirely omitted. In thiscase N should be taken to be zero
in interpreting the figures.

5. Any of the locations LOC1,...,LOCM may be omitted. As in the case of operations with omitted
conditional branches, control then passes to the operation following the RCALL.

6. The return indicated by RRTURN may be M1, in which case control is passed to the operation
following the RCALL.

7. Thereturnindicated by RRTURNisnever greater than Mt1.

8. RCALL typically must save program state information. On the IBM System/360, this consists of the
location LOC and a base register for the procedure containing the RCALL. This information is pushed
onto the stack. In pushing information onto the stack, care must be taken to observe the rules concerning
the use of descriptors. The rest of the SNOBOL 4 system treats the stack as descriptors, and the flag fields
of descriptors used to save program state information must be set to zero.

9. Seedso SELBRA.

88. RCOWP (real comparison)

RCOWVP DESCR1, DESCR2, GTLOC, EQLCC, LTLOC

RCOWP is used to compare two real numbers. If Rl > R2, transfer isto GTLOC. If Rl = R2,
transferisto GTLCC. If Rl < R2,transferisto LTLOC.

Data Input to RCOVP:

DESCRL [R | | |

DESCR2 | R ‘ |

Programming Notes:

1. Seeadso ACOVP and LCOWP.

-59-

89. REALST (convert real number to string)

REALST SPEC, DESCR |

REALST is used to convert areal number into a specified string.
Data Input to REALST:

DESR [R | | |

Data Altered by REALST:

SPEC |BUFFER| o | o | o L

BOPFER | <a | ... | a |

Programming Notes:

1. C1...CL should represent the real number R inthe SNOBOL4 fashion, containing a decimal point
and having at least one digit before the decimal point, zeroes being added as necessary. If Ris negative,
the string should begin with a minus sign. For compatibility with real literals and data type conversions,
the real number should not be represented in exponent form, although very large or small real numbers
may require alarge number of characters for their representation otherwise.

2. The number of digits (and hence the size of BUFFER) required is machine dependent and depends on
the range available for real numbers.

3. BUFFERisloca to REALST and its contents may be overwritten by a subsequent use of REALST.

4, Seedso | NTSPCand SPREAL.

90. REMSP (specify remaining string)

REMSP SPEC1, SPEC2, SPEC3

RENMSP is used to obtain a remainder specifier resulting from the deletion of a specified length at the
end.

Data Input to REMSP:
sPEC2 | A [F2 | v | @ | L2 |

SPEC3 ‘ ‘ ‘ | | 13 |

-60 -

Data Altered by REMSP:

SPEC1 A2 F2 V2 2+L3 L2-L3

Programming Notes:
1. SPECL and SPEC3 may be the same.
2. L2-L3isnever negative.

3. Seedso FSHRTN.

91. RESETF (reset flag)

RESETF DESCR, FLAG

RESETF is used to reset (delete) aflag from a descriptor.
Data Input to RESETF:

DESCR ‘ | F] |

Data Altered by RESETF:

DESCR ‘ | F-FLAG | |

Programming Notes:
1. Only FLAGisremoved fromtheflagsin F. Any other flags are left unchanged.
2. If Fdoesnotcontain FLAG, no datais altered.

3. Seeadso RSETFI and SETFI .

92. REW ND (rewind file)

REW ND DESCR

REW NDis used to rewind the file associated with the unit reference number 1| .

Data Input to REW ND:

DESCR I

-61-

Programming Notes:

1. Refer to Section 2.1 for adiscussion of unit reference numbers.

2. Seeaso BKSPCE and ENFI LE.

93. RLINT (convert real number tointeger)

RLI NT DESCR1, DESCR2, FLOC, SLCC

RLI NT is used to convert areal number to an integer. If the magnitude of R exceeds the magnitude
of the largest integer, transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to RLI NT:
DESCR2 | R | ‘ |

Data Altered by RLI NT:
DESCRL iR | o | 1 |

Programming Notes:
1. | (R) istheinteger equivalent of thereal number R.
2. Thefractional part of Risdiscarded.

3. | isasymbol defined in the source program and is the code for the integer data type.

94. RPLACE (replace characters)

RPLACE SPEC1, SPEC2, SPEC3

RPLACE is used to replace characters in a string. SPEC2 specifies a set of characters to be
replaced. SPEC3 specifies the replacement to be made for the characters specified by SPEC2. The
replacement is described by the following rules. For 1 = 1,..L

F(Cl) =C ifd #C2 forany J (1 <J < L2)
F(Cl) = C3J if O = C2J forsome J (1 < J < L2)

-62-

Data Input to RPLACE:

sec [A | Ca]
sec2 | A2 | | | @ [2 |
sPEcs [M | | | @ | 2 |
AL+01 | a [... | a |
A2+Q2 | c1 | ... | co2 |
A3+CB | 1 [... | a2 |

Data Altered by RPLACE:

A1+01 | Fey | ... | F(ay) |

Programming Notes:
1. L may be zero.
2. If there are duplicate charactersin C21. .. C2L2, replacement should be made corresponding to the
last instance of the character. That is, if
2l =CJ=... =CK (I <J <K
then
F(Cl) = C3K

3. RPLACE is used only in the SNOBOL4 REPLACE function. It is not essential that RPLACE be
implemented as such. If it is not, RPLACE should transfer to UNDF to provide an appropriate error
comment.

95. RRTURN (recursivereturn)

RRTURN DESCR, N

RRTURN is used to return from a recursive call. DESCR is the descriptor whose value is returned.
The stack pointers are repositioned as shown. At the location LOC, code similar to that shown is
assembled by the RRCALL to which return is to be made. OP represents an instruction that is used by
RRTURN to return the value of DESCR. Control istransferred to LOCN corresponding to N given in the
RRTURN.

-63-

Data Input to RRTURN:

OSTACK | A] ‘ |
A+D | A0 | ‘ |
A+2D [Lo | ‘ .
DESCR | A [| w1]

Data Altered by RRTURN:

CSTACK A ‘ |
OSTACK | A0 | ‘ |
DESCRL | A [| w1]
Return Code at LOC:
LoC oP DESCRL

BRANCH LoCL

BRANCH LOCM

Programming Notes:

1. RCALL and RRTURN are used in combination, and their relation to each other must be thoroughly
understood.

2. DESCR may be omitted. Inthiscase, OP should not be executed.

96. RSETFI (reset flagindirect)

RSETFI DESCR, FLAG

RSETFI isused to reset (delete) aflag from a descriptor that is specified indirectly.
Data Input to RSETFI :

DESCR A] | |

A | L F [|

Data Altered by RSETFI :

A F- FLAG

Programming Notes:
1. Only FLAGisremoved fromtheflagsin F. Any other flags are left unchanged.
2. If Fdoesnotcontain FLAG, no datais altered.

3. Seedso RESETFand SETFI .

97. SBREAL (subtract real numbers)

SBREAL DESCR1, DESCR2, DESCR3, FLOC, SLOC

SBREAL is used to subtract one real number from another. If the result is out of the range available
for real numbers, transfer isto FLOC. Otherwise transfer isto SLCC.

Data Input to SBREAL :

DEScR2 | R | F2 | v |

DESCRs [R | | |

Data Altered by SBREAL:

DESCR1L | RR-RB | F2 | v2 |

Programming Notes:

1. Seeadso ADREAL, DVREAL, EXREAL, MNREAL, and MPREAL.

98. SELBRA (select branch point)

SELBRA DESCR, (LOCL, ..., LOCN) |

SELBRA isused to alter the flow of program control by selecting alocation from alist and branching
toit. Transferisto LOCI correspondingto | .

Data Input to SELBRA:

DESCR I

-65-

Programming Notes:

1. Any of the locations may be omitted. As in the case of operations with omitted conditional branches,
control then passes to the operation following SELBRA.

2. If I = N#1, control is passed to the operation following SELBRA.

3. | isawaysintherange 1 < | < N+1. For debugging purposes, it may be useful to verify that |
iswithin thisrange.

99. SETAC (set addressto constant)

SETAC DESCR, N |

SETAC is used to set the address field of a descriptor to a constant.
Data Altered by SETAC:

DESCR N

Programming Notes:

1. Nmay be arelocatable address.
2. Nisoften0, 1, 0or D.

3. Nisnever negative.

4. Seealso SETVC, SETLC, and SETAV.

100. SETAV (set addressfrom valuefield)

SETAV DESCRL, DESCR? |

SETAV sets the address field of one descriptor from the value field of another.
Data Input to SETAV:

DESCR2 ‘ ‘ | v |

Data Altered by SETAV:

DEscRt | v | o | o |

- 66 -

Programming Notes:

1. Seedso SETAC

101. SETF (set flag)

SETF DESCR, FLAG

SETF is used to set (add) aflag in the flag field of DESCR.
Data Input to SETF:

DESCR ‘ | F] |

Data Altered by SETF:

DESCR | | F+FLAG | .

Programming Notes:
1. FLAGisadded totheflagsalready presentin F. The other flags are |eft unchanged.
2. If Fadready contains FLAG, no dataisaltered.

3. Seedso SETFI.

102. SETFI (set flagindirect)

SETFI DESCR, FLAG

SETFI isusedto set (add) aflag in the flag field of a descriptor specified indirectly.
Data Input to SETFI :

DESCR | A ‘ |

A | I

Data Altered by SETFI :

A ‘ | F+FLAG | |

- 67 -

Programming Notes:
1. FLAGisadded totheflagsaready presentin F. The other flags are left unchanged.
2. If Fadready contains FLAG, no dataisaltered.

3. Seedso SETF and RSETFI .

103. SETLC (set length of specifier to constant)

SETLC SPEC, N |

SETLCisused to set the length of a specifier to a constant.
Data Altered by SETLC:

SPEC N

Programming Notes:
1. Nisnever negative.
2. NisoftenO.

3. Seedso SETAC.

104. SETSIZ (setsize)

SETSI Z DESCR1, DESCR2

SETSI Z isused to set the size into the value field of atitle descriptor.
Data Input to SETSI Z:

DEscRL [A | | |

DEscRe | 1| | |

Data Altered by SETSI Z:

A | |]

-68 -

Programming Notes:
1. | isalways positive and small enough to fit into the value field.

2. Seedso GETSIZ

105. SETSP (set specifier)

SETSP SPEC1, SPEC2

SETSP is used to set one specifier equal to another.
Data Input to SETSP:

s [A [F | v [o [L]

Data Altered by SETSP:

sPect | A | F | v | o | L |

106. SETVA (set valuefield from address)

SETVA DESCR1, DESCR? |

SETVA isused to set the value field of one descriptor from the address field of another.
Data Input to SETVA:

DEscRe | 1| | |

Data Altered by SETVA:

pesct [| [1]

Programming Notes:
1. | isaways positive and small enough to fit into the value field.

2. Seealso SETVAand SETVC.

-69 -

107. SETVC (set valueto constant)

SETVC DESCR, N |

SETVCis used to set the value field of a descriptor to a constant.

Data Altered by SETVC:

DESCR

Programming Notes:

1. Nisaways positive and small enough to fit into the value field.

2. Seedso SETVAand SETAC.

108. SHORTN (shorten specifier)

SHORTN SPEC, N |

SHORTN is used to shorten the specification of a string.

Data Input to SHORTN:

SPEC ‘ ‘

Data Altered by SHORTN:

SPEC ‘ ‘

Programming Notes:

1. L- Nisnever negative.

109. SPCI NT (convert specifier to integer)

SPCI NT DESCR, SPEC, FLOC, SLOC .

SPCI NT is used to convert a specified string to ainteger. | (S) isasigned integer resulting from

the conversion of the string CL1. .. CL.

If Cl...CL does not represent an integer or if the integer it

represents istoo large to fit the address field, transfer isto FLOC. Otherwise transfer isto SLOC.

-70-

Data Input to SPCI NT:

SPEC A ‘) L

A+O | a [... | a |

Data Altered by SPClI NT:

DESCR L1 | o [v |

Programming Notes:

1. | isasymbol defined in the source program and is the code for the integer data type.

2. Cl...CL may begin with asign (plus or minus) and may contain indefinite number of leading zeros.
Consequently the value of L itself does not determine whether the integer represented is too large to fit
into an address field.

3. A signaoneisnot avalidinteger.

4. If L = 0, I (S) should bethe integer O.

5. Seealso | NTSPCand SPREAL.

110. SPEC (assemble specifier)

LOC SPEC AF V,QOL

SPEC s used to assemble a specifier.
Data Assembled by SPEC:

LOC A F V O] L

111. SPOP (pop specifier from stack)

SPOP (SPECL, . .., SPECN) |

SPOP isused to pop alist of specifiers from the system stack.

-71-

Data Input to SPOP:

CSTACK | A] ‘ |
A+D-S | At [L | v1 | a L1
AD(NS) [AN | FN | W | o LN

Data Altered by SPOP:

CSTACK [A (N9) | | |
SPECL | At [L | v1 | a L1
SPECN AN FN VN ON LN

Programming Notes:

1. If AA(N*S) < STACK, stack underflow occurs. This condition indicates a programming error in
the implementation of the macro language. An appropriate error termination for this error may be obtained
by transferring to the program location | NTR10 if the condition is detected.

2. Seedso POP, SPUSH, and PUSH.

112. SPREAL (convert specified string to real number)

SPREAL DESCR, SPEC, FLOC, SLCC |

SPREAL is used to convert a specified string into a real number. R('S) is a signed real number
resulting from the conversion of thestring S = C1. If Cl. .. CL does not represent areal number, or if
the real number it representsis out of the range available for real numbers, transfer isto FLOC. Otherwise
transfer isto SLCC.

Data Input to SPREAL :

SPEC | A] ‘ | o L

A+O l a | ... | a |

-72-

Data Altered by SPREAL :

DESCR | RS | o R

Programming Notes:

1. Risasymbol defined in the source program and is the code for the real data type.

2. C1,..., CL may begin with asign (plus or minus) and may contain an indefinite number of leading
zeros. Cl1, ..., CL will contain adecimal point if it represents a real number, and have at least one digit
before the decimal point.

3. If L =0, R(S) should be the real number 0.0.

4. Seedso SPCINT and | NTRL.

113. SPUSH (push specifiers onto stack)

SPUSH (SPECL, . . ., SPECN) |

SPUSH s used to push alist of specifiers onto the system stack.
Data Input to SPUSH:

CSTACK | A] ‘ |
SPECL | At [L | v1 | a L1
SPECN | AN | PN | W [o LN

Data Altered by SPUSH:

CSTACK | AH(S*N) | ‘ .
A+D | At [L | v1 | a L1
A+D+S*N-S AN FN VN ON LN

-73-

Programming Notes:

1

If A+(S*N) > STACK+STSI ZE, stack overflow occurs. Transfer should be made to the program

location OVER, which will result in an appropriate error termination.

2.

Seeadso PUSH, POP, and SPOP.

114. STPRNT (string print)

STPRNT DESCR1, DESCR2, SPEC

STPRNT isused to print astring. The string C11. .. C1L is printed on the file associated with unit

reference number 1. C21... C2Misthe output format. J is an integer specifying a condition signaled
by the output routine.

Data Input to STPRNT:

DEscRz | A | | |
A+D] . |
A+2D | A ‘ |
A2 | | []
A2+4D | c2r [... | cm |
SPEC | AL | ‘ | o L
A1+QL | ca1r | ... | caL |

Data Altered by STPRNT:

DESCR1 3] ‘ |

Programming Notes:

1.

2.

Theformat C21. .. C2MisaFORTRAN IV format in‘‘‘undigested’’’ form. See FORNAT.
Both Cl11...ClLand C21... C2Mbegin at descriptor boundaries.
The condition J set inthe address field of DESCRL isnot used.

Seeaso QUTPUT and STREAD.

-74 -

115. STREAD (stringread)

STREAD SPEC, DESCR, EOF, ERROR, SLCC

STREAD is used to read a string. The string C1. .. CL is read from the file associated with unit
reference number 1. If an end-of-file is encountered, transfer is to EOF. If a reading error occurs,
transfer isto ERROR. Otherwise transfer isto SLCC.

Data Input to STREAD:

DEScR [1| | |

SPEC A] ‘ | o L

Data Altered by STREAD:

A+O | a [... | a |

Programming Notes:

1. Notethat the length of the string to be read is specified by the data provided to STREAD. If the record
read is not of length L, FORTRAN IV conventions regarding truncation or reading of additional records
should be followed.

2. Seealso STPRNT.

116. STREAM (stream for token)

STREAM SPEC1, SPEC2, TABLE, ERROR, RUNOUT, SLCC

STREAMis used to locate a syntactic token at the beginning of the string specified by SPEC2. If
thereisan | (1 < | < L) suchthat Tl is ERROR, STOP, or STOPSH, and J istheleast such 1,
then if TJ is ERROR, transfer is to ERRROR, while if if TJ is STOPSH, transfer is to SLCC.
Otherwise transfer isto RUNOUT.

In the figures that follow, J istheleast valueof | for which Tl is STOP or STOPSH. Pisthe
last value of P (1 < | < J) that is nonzero (i.e. for which a PUT is specified in the syntax table
description for the tables given). If no PUT is specified, P is zero.

-75-

Data Input to STREAM

SPEC2 A [F | v | o | v |
A+O la | ...] o o] ... [a |
TABLE+E*Cl | A2 | T1 | P1 |

mpRErc2 | A3 | T2 | P2 |

AL+E*CL | | 1. | P |

Data Altered by STREAMIf Termination is STOP:

STYPE P] | |
SPECL A [F | v | o | 3 |
SPEC2 A | F | v | o | L3 |

Data Altered by STREAMIf Termination is STOPSH:

STYPE P ‘ .
SPECL A [F | v | o | 31 |
SPEC2 A | F | v o1] L-3a |

Data Altered by STREAMIf Termination is ERROR:

STYPE | o | ‘ |

st | A | F [v | o |

Data Altered by STREAMIf Termination is RUNOUT:

STYPE | P | ‘ |
SPEC1 I A | F | v | o | v |
SPEC2 A [F | v | o | o |

-76 -

Programming Notes:

1. Termination with STOP or STOPSH may occur on the last character, CL.

2. If L = 0 (i.e.if SPEC2 specifiesthe null string), RUNOUT occurs. In this case the address field of

STYPE should be set to 0.

3. See Section 4.2.

117. STRI NG (assemble specified string)

LOC STRI NG 'Cl...CL |

STRI NGis used to assemble a string and a specifier to it.

Data Assembled by STRI NG

Ltc | A | o

A | ca |

Programming Notes:

1. Notethat LOC isthe location of the specifier, not the string. The string may immediately follow the

specifier, or it may be assembled at a remote location.

118. SUBSP (substring specification)

SUBSP SPEC1, SPEC2, SPEC3, FLOC, SLOC

SUBSP is used to specify an initial substring of a specified string. If L3

SLCC. Otherwisetransfer isto FLOCand SPEC1 is not altered.

Data | nput to SUBSP:

> L2, transfer is to

SPEC2 ‘ ‘

L2

SPEC3 | A | F3

L3

Data Altered by SUBSP if L3 = L2:

SPEC1 | A | F3

L2

119. SUBTRT (subtract addresses)

SUBTRT

DESCR1, DESCR2, DESCR3, FLOC, SLCC

SUBTRT is used to subtract one address field from another. A2 and A3 are considered as signed
integers. If A2- A3 isout of the range available for integers, transfer isto FLOC. Otherwise transfer isto

SLCC.
Data Input to SUBTRT:

DESCR2 | A | 2 | v |
DESCR3 | A3 | ‘ |
Data Altered by SUBTRT:

DESCRL | A-A3 [2 | v2 |

Programming Notes:

1. A2 and A3 may berelocatable addresses.

2. The test for success and failure is used in only one call of this macro. Hence the code to make the

check is not needed in most cases.

3. DESCRI1 and DESCR2 are often the same.

4. Seeaso SUM

120. SUM (sum addresses)

SUM

DESCR1, DESCR2, DESCR3, FLCC, SLOC

SUMis used to add two address fields. A and | are considered as signed integers. If A+l isout
of the range available for integers, transfer isto FLOC. Otherwise transfer isto SLOC.

Data Input to SUM

DESCR2 I A | F | v |
DESCR3 L] ‘ .
Data Altered by SUM

DESCRL A& [F | v]

-78-

Programming Notes:
1. Amay bearelocatable address.

2. The test for success and failure is used in only one call of this macro. Hence the code to make the
check isnot needed in most cases.

3. DESCR1 and DESCR? are often the same.

4. Seealso SUBTRT.

121. TESTF (test flag)

TESTF DESCR, FLAG, FLOC, SLCC

TESTF is used to test a flag field for the presence of aflag. If F contains FLAG transfer is to
SLOC. Otherwise transfer isto FLOC.

Data Input to TESTF:

DESCR F

Programming Notes:

1. Seedso TESTFI.

122. TESTFI (test flagindirect)

‘ TESTFI DESCR, FLAG, FLOC, SLOC

TESTFI is used to test an indirectly specified flag field for the presence of aflag. If F contains
FLAG transfer isto SLOC. Otherwise transfer isto FLOC.

Data Input to TESTFI :

DESCR | A] ‘ |

A | L F [

Programming Notes:

1. Seedso TESTF.

-79-

123. TITLE (title assembly listing)

TI TLE "Cl...CN

TI TLE is used at assembly time to title the assembly listing of the SNOBOL4 system. Tl TLE
should cause a page eject and title subsequent pages with C1. .. CN.

Programming Notes:

1. TI TLE need not be implemented as such. It may simply perform no operation.

124. TOP (get totop of block)

TOP DESCR1, DESCR2, DESCR3

TOP is used to get to the top of a block of descriptors. Descriptors at A, A-D,...,A- (N*D) are
examined successively for the first descriptor whose flag field contains the flag TTL. Datais altered as
indicated, where F3Nisthefirst field to contain TTL.

Data Input to TOP:

DESCR3 I A | F | v |
A (ND) | | F3N | |
A-D ‘ | P31 | .
A ‘ | F30 | |

Data Altered by TOP:

DESCRL laAaNwD | F | v |

DEsce | ND | 0 | o |

Programming Notes:

1. NmaybeO. Thatis, F30 may contain TTL.

-80-

125. TRI MSP (trim blanksfrom specifier)

TRI MSP SPEC1, SPEC2 |

TRI MBP is used to obtain a specifier to the part of a specified string up to atrailing string of blanks.
Data lnput to TRI MVSP:

sPecc | A | F | v | o | L |

A+O la | ... [o |Jaxa] ... | a |

Data Altered by TRI VBP:

ssect | A | F [v | o | 1 |

Programming Notes:
1. If CLisnotblank, J = L.

2. If L = 0, TRIMSPisequivaentto SETSP.

126. UNLQAD (unload external function)

UNLOAD SPEC |

UNLQAD is used to unload an external function. C1. .. CL represents the name of the function that
isto be unloaded.

Data Input to UNLOAD:

SPEC | A] ‘ | o L

A+O I a | ... | a |

Programming Notes:

1. UNLQADis a system-dependent operation.

2. UNLOAD need not be implemented as such. If it is not, it should perform no operation, since the
SNOBOL function UNLOAD, which uses the macro UNLQAD, has a valid use in undefining existing, but
non-external, functions.

3. UNLOAD should do nothing if the function C1. .. CL isnota LQOADed function.

4. Seealso LOADand LI NK.

-81-

127. VARI D (compute variableidentification numbers)

VAR D DESCR, SPEC |

VARI D is used to compute two variable identification numbers from a specified string. Kand M
are computed by

K = F1(Cl...CL)
M= F2(Cl...CL)

where F1 and F2 are two (different) functions that compute pseudo-random numbers from the characters
Cl. .. CL. Thenumbers computed should be in the ranges

0 < K< (OBSIZ-1)*D
0 <M< SIZLIM

where OBSI Z is a program symbol defining the number of chains in variable storage and SI ZLI Mis a
program symbol defining the largest integer that can be stored in the value field of a descriptor.

Data Input to VARI D:

<
<

SPEC A] | | o L

A+O | a [... | a |

Data Altered by VARI D:

DESCR | K | | M|

Programming Notes:

1. Kisused to select one of a number of chainsin variable storage. The K are address offsets that must
fall on descriptor boundaries.

2. Misused to order variables (string structures) within achain. See ORDVST.

3. Thevauesof Kand Mshould have as little correlation as possible with the characters C1. .. CL,
sincethe**‘randomness'”’ of the results determines the efficiency of variable access.

4. One simple agorithm consists of multiplying the first part of C1...CL by the last part, and
separating the central portion of theresultinto Kand M

5. L isawaysgreater than zero.

128. VCWPI C (valuefield compareindirect with offset constant)

VCWVPI C DESCR1, N, DESCR2, GTLOC, EQLOC, LTLOC

-82-

VCMPI C is used to compare a value field, indirectly specified with an offset constant, with another
value field. V1 and V2 are considered as unsigned integers. If V1 > V2, transfer isto GTLOC. If
V1 = V2, transferisto EQLCC. If V1 < V2, transferisto LTLOC.

Data Input to VCMPI C:

DESCR1 | A . |
DESCR2 ‘ ‘ | v |
AL+N ‘ ‘ | v |

129. VEQ. (valuefiedsequal test)

‘ VEQL DESCRL, DESCR2, NELOC, EQLCC |

VEQL is used to compare the value fields of two descriptors. V1 and V2 are considered as
unsigned integers. If V1 = V2, transferisto EQLOC. Otherwise transfer isto NELCC.

Data Input to VEQL:

DESCR1L ‘ ‘ | w1 |

DESCR2 ‘ ‘ | w2 |

Programming Notes:

1. Seedso AEQL and VEQLC.

130. VEQ.C (valuefield equal to constant test)

VEQLC DESCR, N, NELOC, EQ.CC |

VEQLC is used to compare the value field of a descriptor to a constant. V is considered as an
unsigned integer. If V = N, transferisto EQLOC. Otherwise transfer isto NELCC.

Data Input to VEQLC:

DESCR ‘ ‘ | v

-83-

Programming Notes:
1. Nisnever negative.

2. Seedso AEQLCand VEQL.

131. ZERBLK (zero block)

ZERBLK DESCR1, DESCR2

ZERBLK isused to zero ablock of | +1 descriptors.
Data Input to ZERBLK:

DEscRL [A | | |

DESCR2 | D1 . |

Data Altered by ZERBLK:

A | o [o | o |

AHD) |0 0 0

Programming Notes:
1. | isalways positive.
7. Implementation Notes

7.1. Optional Macros

There are several macros that are used in noncritical parts of the SNOBOL 4 language. Some macros
are used only to implement certain built-in functions. Others are required only for minor executive
operations. The following list includes macros for which implementation is optional. For these macros,
simple aternative implementations are suggested and the language features disabled are indicated. In
selecting macros for inclusion in this list, a judgement was made concerning what features could be

disabled and still leave SNOBOL 4 a useful language.

Macro

ADREAL 1—
BKSPCE
CLERTB2—
DATE
DVREAL1—
ENFI LE
EXPI NT
EXREAL1—
GETBAL

| NTRL1—
LEXCMP3—
LI NK4—
LOADA—
MNREAL 1—
MPREAL 1—
NVSTI VE
ORDVST
PLUGTB2—
RCOMP1—
REALST1—
REW ND
RLI NT1—
RPLACE
SBREAL1—
SPREAL 1—
TRI MSP

Alternative Implementation

Branch to | NTR10
Branch to UNDF

Branch to UNDF

Set length of SPECto 0
Set address of DESCR2 to 0
Branch to UNDF

Branch to UNDF
Branchto | NTR10
Branch to UNDF

Perform no operation

If GTLOC# LTLQOC, branch to UNDF
Branchto | NTR10
Branch to UNDF
Branchto | NTR10
Branchto | NTR10

Set address of DESCRto 0
Perform no operation
Branchto | NTR10
Branchto | NTR10
Branch to UNDF
Branchto | NTR10
Branchto | NTR10
Branchto | NTR10
Branchto | NTR10

Take the FAI LURE exit

Branchto | NTR10

Features Disabled

Real arithmetic

The function BACKSPACE

The functions ANY, NOTANY, SPAN, and BREAK
The function DATE

Real arithmetic and post-run statictics

The function ENDFI LE

Exponentiation of integers

Redl arithmetic

The built-in pattern BAL

Real arithmetic

The function LGT

External functions

External functions

Real arithmetic

Real arithmetic

The function Tl ME, trace timing, post-run statistics
Alphabetization of post-run dump

The functions ANY, NOTANY, SPAN,and BREAK
Real arithmetic

Real arithmetic

The function REW ND

Real arithmetic

The function REPLACE

Real arithmetic

Real arithmetic

The function TRI M

1—AlI operationsrelating to real arithmetic should be implemented or not implemented as a group.

2—CLERTBand PLUGTB should be implemented or not implemented as a pair.
3—LEXCMP must be properly implemented if LTLOCisthe sameas GTLCC.

4—L |1 NK, LOAD, and UNLQAD should be implemented or not implemented as a group.

-85-

UNL QAD4— Perform no operation External functions

7.2. Machine-Dependent Data

In addition to the data given in the COPY files (g.v.) there are severa format strings that generally
have to be changed to suit a particular machine. The strings defined by FORMAT (which occur at the end
of the source file) are in this category. The two strings CRDFSP and OQUTPSP defined by STRI NG are
also machine dependent.

7.3. Error Exitsfor Debugging

During the debugging phases, it is good programming practice to test for certain conditions that
should not occur, but typicaly do if there is an error in the implementation. Stack underflow is typical.
Transfer to the label 1 NTR10 upon recognition of such an error causes the SNOBOL4 run to terminate
with the message ERROR | N SNOBOL4 SYSTEM Following this message, the statement number in
which the error occurred is printed, as well as requested dumps and termination statistics that may be
helpful in debugging.

7.4. SubroutinesVersusIn-Line Code

The choice between implementing macro operations by subroutine cals or in-line code depends on a
number of factors, including the machine and its environment. The size of the SNOBOL4 system usually
encourages subroutine implementations of the more complicated operations. The following information,
obtained by program analysis and dynamic performance measurements, may be helpful in making these
decisions. Column 1 lists the macro operations in alphabetical order, including non-executable macros.
Column 2 gives the number of times each each macro operation occurs in the SNOBOL4 program.
Column 3 gives the percentage of time spent in each (executable) macro during execution of atypical set
of programs on the IBM System/360 implementation. Time spent in 1/O and operating system subroutines
is not included. A * marks those macros that are implementated by subroutines in the IBM System/360
implementation (including macros that call 1/0 and system subroutines).

ACOWP 65 2.952
ACOVPC 61 1.450
ADDLG 8 0.000
ADDSI B 6 0.000
ADDSON 12 0.017
ADJUST 2 0.000
ADREAL 1 0.000
AECL 18 0.397
AEQLC 177 3.574
AEQLI C 10 0.086
APDSP* 93 0.897
ARRAY 5 -—
BKSI ZE 5 1.329
BKSPCE* 1 0.000
BRANCH 354 0.638
BRANI C 5 2.054
BUFFER 5 -—
CHKVAL 4 0.604
CLERTB 4 0.000
CcorPY 3 -
CPYPAT* 14 3.021
DATE* 1 0.000
DECRA 66 1.588
DECL 73 1.346
DESCR %2 -—
DI VI DE 4 0.000

- 86—

DVREAL
END
ENDEX*
ENFI LE*
EQU
EXPI NT
EXREAL*
FORMAT
FSHRTN
GETAC
GETBAL*
GETD
GETDC
GETLG
GETLTH
GETSI Z
GETSPC
| NCRA

| NCRV

I NIT*

| NSERT
| NTRL

| NTSPC
| STACK
LCOVP
LEQLC
LEXCVP*
LHERE
LI NK*
LI NKOR
LOAD*
LOCAPT
LOCAPV
LOCSP

L VAL UE*
MAKNOD
MNREAL
MNSI NT
MOVA
MOVBLK*
MOVD
MOVDI C
MOV
MPREAL
MSTI VE*
MULT
MULTC
ORDVST*
OUTPUT*
PLUGTB
POP
PROC
PSTACK
PUSH

R R RN

69

[

26
12
10

53
113
59

28
10
140

I

25

18
12
14

SN

21
32
80

13

SN

13
155

16

[

18

28

118
173

124

-87 -

PUTAC
PUTD
PUTDC
PUTLG
PUTSPC
PUTVC
RCALL
RCOVP
REALST*
REVSP
RESETF
REW ND*
RLI NT
RPLACE*
RRTURN
RSETFI
SBREAL
SELBRA
SETAC
SETAV
SETF
SETFI
SETLC
SETSI Z
SETSP
SETVA
SETVC
SHORTN
SPCI NT*
SPEC
SPOP
SPREAL*
SPUSH
STPRNT*
STREAD*
STREAM:
STRI NG
SUBSP
SUBTRT
SUM
TESTF
TESTFI
TI TLE
TOP

TRI MSP
UNL OAD*
VARI D
VCWPI C
VEQL
VEQLC
ZERBLK

11
33
126

©

342

10

P NRP W

21

N

18
169
33
28
23
14
28

24
30

13

15

35
152

22
67
24

24

10

WO WkrRrEFFEND

88

7.5. Classification of Macro Operations

In the following sections, the macro operations are classified according to the way they are

used.

Assembly Control Macros:

CcorPY

END

Macros that Assemble Data:

ARRAY

STRI NG

Branch Macros:
BRANCH

Comparison Macros:

ACOWP
CHKVAL
RCOWP
VEQLC

BUFFER

BRANI C

ACOVPC

DEQL
TESTF

EQU

DESCR

SELBRA

AEQL
LCOWP
TESTFI

LHERE

FORVAT

AEQLC
LEQLC
VCWPI C

Macrosthat Relate to Recursive Procedur es and Stack Management:

| STACK
RCALL

Macrosthat Move and Set Descriptors:

GETD
POP

POP
RRTURN

GETDC
PUSH

PROC
SPCP

MOVBLK
PUTD

Macrosthat Modify Address Fields of Descriptors:

ADJUST
GETLTH
SETAC

BKSI ZE
GETSI Z
SETAV

DECRA
I NCRA

Macrosthat Modify Value Fields of Descriptors:

I NCRV
SETVC

MOWV

PUTVC

Macrosthat Modify Flag Fields of Descriptors:

RESETF

Macrosthat Perform Integer Arithmetic on Address Fields:

DECRA
MULT

RSETFI

Dl VI DE
MULTC

SETF

EXPI NT
SUBTRT

89

PSTACK
SPUSH

MOVD
PUTDC

GETAC
MOVA

SETSI Z

SETFI

I NCRA
SUM

TI TLE

SPEC

AEQLI C
LEXCWP
VEQL

PUSH

MOvDI C

ZERBLK

GETLG

PUTAC

SETVA

MNSI NT

M acrosthat Deal with Real Numbers:

ADREAL DVREAL EXREAL
VPREAL RCOWP REALST
SPREAL

Macrosthat Move Specifiers:
GETSPC PUTSPC SETSP

Macros that Oper ate on Specifiers:

ADDLG APDSP FSHRTN
LOCSP PUTLG RENMSP
STREAM SUBSP TRI M5P

Macrosthat Operate on Syntax Tables:
CLERTB PLUGTB

M acros that Construct Pattern Nodes:
CPYPAT MAKNOD

Macrosthat Operate on Tree Nodes:
ADDSI B ADDSON | NSERT

I nput and Output M acros:

BKSPCE ENFI LE FORNVAT
STPRNT STREAD

Macrosthat Depend on Operating System Facilities:

DATE ENDEX INIT
V5T ME UNLOAD

Miscellaneous M acr os:
LI NKOR LOCAPT LOCAPV
RPLACE SPCI NT TOP

7.6. Format of the SNOBOL 4 Sour ce File

I NTRL
RLI NT

SPCOP

GETBAL
SETLC

OUTPUT

LI NK

LVALUE
VARI D

MNREAL
SBREAL

SPUSH

I NTSPC
SHORTN

REW ND

LOAD

ORDVST

One problem in implementing SNOBOL4 for a particular machine involves putting the
macro language program into a form suitable for the assembler for that machine. This typically
involves making a number of format changes and correcting a few special cases by hand. It is
desirable to perform as many changes as possible by some systematic, mechanical means (preferably
with a program) so that new versions of the macro language program can be converted into the
required form easily, thus facilitating the incorporation of updates in the SNOBOL4 language. A
systematic, mechanical technique also minimizes random errors inevitably introduced by human
interference. Such random errors are particularly dangerous in such an implementation, since most
of thelogic of the systemisat alevel divorced from the implementation of the macro language. This
section describes the format of the macro language program in order to make the necessary format

90

changes easier to determine.

The SNOBOL4 assembly source file consists of 6611 80 character card images. All card
images are blank in column 72 and contain sequence numbering in columns 73 through 80. Updates
to the source file are given in terms of these sequence numbers, so care should be taken not to
destroy this information. There are two kinds of card images. program text and comments.
Comments have an asterisk (*) in column 1 and descriptive text of various types in columns 2
through 71. All other card images (about 4850 out of the total of 6611) are program text. Program
text has afield format as follows:

1. Columns 1 through 6: label field. A program label, if present, beginsin column 1. All labels
begin with a letter, followed by letters or digits. Labels are from two through six characters in
length. If aprogram card has no label, the label field is blank.

2. Column7: blank.

3. Columns 8 through 13: operation field. Program text has operations that begin in column 8.
Operations consist of from three to six |etters.

4. Columns 14 and 15: blank.

5. Columns 16 through 71: variable field. A list of operands appears in the variable field starting
in column 16. The list consists of items separated by commas. The last item in the list is followed
by a blank. If there are no operands, there isa commain column 16 and a blank in column 17. ltems
in the operand list may take several forms:

a Identifiers, which satisfy the requirements of program labels.
b Integer constants.

c. Arithmetic expressions containing identifiers and constants.
d

Lists of items enclosed in parentheses. Lists are not nested, i.e. lists do not occur as items
within lists.

e Character literals, consisting of characters enclosed in single quotation marks. Quotation
marks do not occur within literals, but commas, parentheses, and blanks may. This fact must
be taken into account in analyzing the variable field.

f. Nulls, or items of zero length. Nulls represent explicitly omitted arguments to macro
operations.

Comments may occur following the blank that terminates the variable field. Such comments
begin in column 36 or subsequently.

The following portion of program istypical.

L

Bl ock Mar ki ng

GCM PRCC , Procedure to nmark bl ocks
POP BK1CL Restore block to mark from
PUSH ZEROCL Save end nmar ker

GCVAL CETSI Z BKDX, BK1CL Get size of block

GCVA2 GETD DESCL, BK1CL, BKDX Get descri ptor
TESTF DESCL, PTR, GCVA3 Isit a pointer?
AEQLC DESCL, 0, , GCVA3 | s address zero?
TOP TOPCL, OFSET, DESCL CGet totitle of block pointedto
TESTFI TOPCL, MARK, GCVA4 I's bl ock marked?

GCVA3 DECRA BKDX, DESCR Decr enent of f set
AEQ.C BKDX, 0, GCMA2 Check for end of bl ock
POP BK1CL Rest ore bl ock pushed
AEQLC BK1CL, 0, , RTN1 Check for end
SETAV BKDX, BK1CL Get size remaini ng

91

00000821
00000822
00000823
00000824
00000825
00000826
00000827
00000828
00000829
00000830
00000831
00000832
00000833
00000834
00000835
00000836
00000837
00000838

GCVA9

Acknowledgement

The SIL version of SNOBOL4 was implemented jointly by the author, Jim Poage, and Ivan
Polonsky. Other individuals, too numerous to mention here, have provided many helpful criticismsand

BRANCH

DECRA
AEQLC
SETVA
PUSH
MOVD
SETFI
TESTFI
MOVD
BRANCH

GCVA2

BKDX, DESCR
BKDX, 0, , GCVA9
BK1CL, BKDX
BK1CL

BK1CL, TOPCL
BK1CL, MARK
BK1CL, STTL, GCVAL
BKDX, TWOCL

GCMVA2

correctionsof thisdocument.

-92-

Cont i nue processing

Decrenment of f set

Check for end

Insert of fset

Save current bl ock

Set poi ner to new bl ock
Mar k bl ock

Isit astring?

Set size of stringto 2
Joi n processing

00000839
00000840
00000841
00000842
00000843
00000844
00000845
00000846
00000847
00000848
00000849
00000850

AppendixA—Syntax TableDescriptions

BEG N Bl OPTB
FOR(PLUS) PUT(ADDFN) GOTQ(TBLKTB)
FOR(M NUS) PUT(SUBFN) GOTQ(TBLKTB)
FOR(DOT) PUT(NAMFN) GOTOQ(TBLKTB)
FOR(DOLLAR) PUT(DOLFN) GOTO(TBLKTB)
FOR(STAR) PUT(MPYFN) GOTQ(STARTB)
FOR(SLASH) PUT(DI VFN) GOTQ(TBLKTB)
FOR(AT) PUT(BI ATFN) GOTQ(TBLKTB)
FOR(POUND) PUT(BI PDFN) GOTO(TBLKTB)
FOR(PERCENT) PUT(Bl PRFN) GOTQ(TBLKTB)
FOR(RAI SE) PUT(EXPFN) GOTQ(TBLKTB)
FOR(ORSYM) PUT(ORFN) GOTQ(TBLKTB)
FOR(KEYSYM) PUT(BI AVFN) GOTQ(TBLKTB)
FOR(NOTSYM) PUT(BI NGFN) GOTQ(TBLKTB)
FOR(QUESYM) PUT(BI QSFN) GOTQ(TBLKTB)
ELSE ERROR

END Bl OPTB

BEG N CARDTB
FOR(CMT) PUT(CMITYP) STOPSH
FOR(CTL) PUT(CTLTYP) STOPSH
FOR(CNT) PUT(CNTTYP) STOPSH
ELSE PUT(NEWFYP) STOPSH
END CARDTB

BEG N DQLI TB
FOR(DQUOTE) STOP
ELSE CONTI N
END DQLI TB

BEG N ELEMIB
FOR(NUMBER) PUT(I LI TYP) GOTQ(| NTGTB)
FOR(LETTER) PUT(VARTYP) GOTQ(VARTB)
FOR(SQUOTE) PUT(QLI TYP) GOTQ(SQLI TB)
FOR(DQUOTE) PUT(QLI TYP) GOTQ(DQLI TB)
FOR(LEFTPAREN) PUT(NSTTYP) STOP
ELSE ERROR

END ELEMTB

BEG N ECSTB
FOR(ECS) STOP
ELSE CONTI N
END EOSTB

BEG N FLI TB
FOR(NUVBER) CONTI N
FOR(TERM NATOR) STOPSH
ELSE ERROR

END FLI TB

-03-

BEG N FRADTB
FOR(BLANK) CONTI N

FOR(EQUAL) PUT(EQTYP) STOP
FOR(Rl GHTPAREN) PUT(RPTYP) STOP
FOR(RI GHTBR) PUT(RBTYP) STOP
FOR(COVMR) PUT(CMATYP) STOP
FOR(COLON) PUT(CLNTYP) STOP
FOR(ECS) PUT(ECSTYP) STOP

ELSE PUT(NBTYP) STOPSH

END FRWDTB

BEG N GOTFTB
FOR(LEFTPAREN) PUT(FGOTYP) STOP
FOR(LEFTBR) PUT(FTOTYP) STOP
ELSE ERROR

END GOTFTB

BEG N GOTOTB
FOR(SGOSYM) GOTQ(GOTSTB)

FOR(FGOSYM) GOTQ(GOTFTB)

FOR(LEFTPAREN) PUT(UGOTYP) STOP
FOR(LEFTBR) PUT(UTOTYP) STOP
ELSE ERROR

END GOTOTB

BEG N GOTSTB
FOR(LEFTPAREN) PUT(SGOTYP) STOP
FOR(LEFTBR) PUT(STOTYP) STOP
ELSE ERROR

END GOTSTB

BEG N | BLKTB
FOR(BLANK) GOTO({ FRWDTB)
FOR(ECS) PUT(ECSTYP) STOP
ELSE ERROR

END | BLKTB

BEG N | NTGTB
FOR(NUVBER) CONTI N

FOR(TERM NATOR) PUT(1LI TYP) STOPSH
FOR(DOT) PUT(FLI TYP) GOTOQ(FLI TB)
ELSE ERROR

END | NTGTB

BEG N LBLTB
FOR(ALPHANUMERI C) GOTQ(LBLXTB)
FOR(BLANK, ECS) STOPSH

ELSE ERROR

END LBLTB

-94 -

BEG N LBLXTB

FOR(BLANK, ECS) STOPSH
ELSE CONTI N

END LBLXTB

BEG N NBLKTB
FOR(TERM NATOR) ERROR
ELSE STOPSH
END NBLKTB

BEG N NUVBTB
FOR(NUVBER) GOTQ(NUMCTB)

FOR(PLUS, M NUS) GOTO(NUMCTB)
FOR(COVMR) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DI MTYP) STOPSH
ELSE ERROR

END NUVBTB

BEG N NUMCTB
FOR(NUVBER) CONTI N

FOR(COVMR) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DI MTYP) STOPSH
ELSE ERROR

END NUMCTB

BEG N SNABTB
FOR(FGOSYM) STOP
FOR(SGOSYM) STOPSH
ELSE ERROR

END SNABTB

BEG N SQLI TB
FOR(SQUOTE) STOP
ELSE CONTI N

END SQLI TB

BEG N STARTB
FOR(BLANK) STOP

FOR(STAR) PUT(EXPFN) GOTQ(TBLKTB)
ELSE ERROR

END STARTB

BEG N TBLKTB
FOR(BLANK) STOP
ELSE ERROR
END TBLKTB

-05-

BEG N UNOPTB
FOR(PLUS) PUT(PLSFN) GOTQ(NBLKTB)
FOR(M NUS) PUT(MNSFN) GOTQ(NBLKTB)
FOR(DOT) PUT(DOTFN) GOTO(NBLKTB)
FOR(DOLLAR) PUT(| NDFN) GOTO(NBLKTB)
FOR(STAR) PUT(STRFN) GOTQ(NBLKTB)
FOR(SLASH) PUT(SLHFN) GOTQ(NBLKTB)
FOR(PERCENT) PUT(PRFN) GOTO(NBLKTB)
FOR(AT) PUT(ATFN) GOTQ(NBLKTB)

FOR(POUND) PUT(PDFN) GOTQ(NBLKTB)
FOR(KEYSYM) PUT(KEYFN) GOTO(NBLKTB)
FOR(NOTSYM) PUT(NEGFN) GOTO(NBLKTB)
FOR(ORSYM) PUT(BARFN) GOTQ(NBLKTB)
FOR(QUESYM) PUT(QUESFN) GOTO(NBLKTB)
FOR(RAlI SE) PUT(AROWEN) GOTO(NBLKTB)
ELSE ERROR

END UNCPTB

BEG N VARATB
FOR(LETTER) GOTQ(VARBTB)

FOR(COVMR) PUT(CMATYP) STOPSH
FOR(Rl GHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR

END VARATB

BEG N VARBTB
FOR(ALPHANUMERI C, BREAK) CONTI N
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COVMR) PUT(CMATYP) STOPSH
FOR(Rl GHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR

END VARBTB

BEG N VARTB
FOR(ALPHANUMERI C, BREAK) CONTI N
FOR(TERM NATOR) PUT(VARTYP) STOPSH
FOR(LEFTPAREN) PUT(FNCTYP) STOP
FOR(LEFTBR) PUT(ARYTYP) STOP

ELSE ERROR

END VARTB

-96—

AppendixB—Auvailablel mplementation M aterial

There is a substantial amount of material available to the would-be instaler of the SIL
implementation of SNOBOL4. Much of the basic documentation is given in a book that is available
throughbook suppliers. Therest of thematerial isavailablefromtheUniversity of Arizona:

RalphE.Griswold

Department of Computer Science
University Computer Center
TheUniversity of Arizona
Tucson,Arizona 85721

U.SA.

telephone: (602) 626-1829

There is no charge for this material but magnetic tapes must be supplied with requests for machine—
readablematerial.

Documentswithidentifyingnumbersshoul dberequested by number.

1. Version 3.11 SIL source code and syntax table descriptions in machine-readable form. This
material isavailablein avariety of tape formats. The standard distribution is 9-track, 1600 bpi,
unlabel edfixed—blocked, EBCDIC.

2. $AD54c: Transportingthe S L Version of SNOBOL4; AnOverview. Givesabrief description of the
processing of implementingthe SIL version of SNOBOL 4; suggested reading prior to seriouswork
ontheimplementation.

3. The Macro Implementation of SNOBOL4; A Case Sudy of Machine-Independent Software
Development. (author: Ralph E. Griswold, publisher: W. H. Freeman & Co.) A description of the
SIL version of SNOBOL4 that describes data structures, algorithms, the SIL macros, and gives
examples from the IBM 360 and CDC 6000 implementations. Thisbook is available from book
sellers. Thepriceisapproximately $25.00. Theterminology usedinthisbook isdifferent from that
usedintheactual SIL source. SeeSAD59bel ow.

4. Corrigendafor The Macro I mplementation of SNOBOL4. Correctionsto the Freeman book listed
above.

5. $4D59: Comparison of Terminologies for the SL Implementation of SNOBOL4. Explains the
differences between terminology of the Freeman book and that actually used in the machine-
readableSIL program.

6. $S4D26¢: Sourceand Cross—Reference Listingsfor the SIL Implementation of SNOBOL4; Version
3.11. Listingof SNOBOL4writtenin SIL. Thisdocumentisprimarily useful foritscrossreference
toprogramsymbols.

7. $SAD20a 1BM 360 Macro Definitionsfor Version 3 of SNOBOLA4. Listing of the IBM 360 macro
definitionsfor SIL operations; primarily useful asan example of an existingimplementation. The
macrodefinitionsareal soavail ableinmachine-readableform.

8. $4D19a IBM 360 Qubroutinesfor Version 3of SNOBOLA4. Listing of thelBM 360 subroutinesthat
support SIL operations; primarily useful as an example of an existing implementation. The
subroutinesareal soavail ableinmachine-readabl eform.

9. $AD57: Implementations of SNOBOL4. Compilation of SNOBOL 4 implementations, including
thosedoneinSIL ; primarily useful asasourceof contactswithother SIL implementors.

-97-

