
-- --

S4D58

Implementing SNOBOL4 in SIL; Version 3.11

Ralph E. Griswold

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

February 1981

-- --

Implementing SNOBOL4 in SIL; Version 3.11

Ralph E. Griswold

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

1. Introduction

The SNOBOL4 programming language is implemented in macro-assembly language called SIL
(SNOBOL4 Implementation Language). This macro language is largely machine-independent and is
designed so that it can be implemented on a variety of computers. Thus, an implementation of the
SNOBOL4 programming language can be obtained by implementing the much simpler macro language.
By implementing the macro language, and using the SNOBOL4 system already written in the macro
language, one obtains a version of SNOBOL4 that is largely source-language compatible with other
versions implemented in the same way. Nearly all the logic of the SNOBOL4 language resides in the
program written in the macro language. Thus if the macro language is implemented properly, the resulting
implementation of SNOBOL4 is essentially the same as other such implementations.

This paper describes the macro language and contains information necessary for its implementation.
Information given here related to Version 3.11 of the SIL source, although it applies equally well to any
modification of the basic Version 3. Section 2 describes environmental considerations. Section 3 describes
the representation of data. Syntax tables and character graphics are described in Section 4. Section 5
explains the method used to describe the macro operations. Section 6 is a list of all macro operations with
a description of how to implement each one. Section 7 contains miscellaneous implementation notes.
Supplementary information, including a list of other documentation, is given in appendices.

2. Environmental Considerations

2.1. Input and Output

SNOBOL4 is designed to perform all input and output through FORTRAN IV routines. A
SNOBOL4 object program has much the same I/O facilities as a FORTRAN IV object program.
Specification of I/O is thus largely machine-independent both at the source-language level and at the
implementation level.

Files are referred to by their FORTRAN unit reference numbers. In SNOBOL4 unit reference
numbers are integers that appear in data that is given in arguments to macros that perform input and output.
Unit reference numbers are referred to symbolically in the SNOBOL4 assembly. See the PARMS file in
the discussion of the COPY macro.

Input, performed by STREAD, uses only A conversion, with lengths being specified. Output is
controlled by formats. Output is performed by OUTPUT and STPRNT. The output done by the
SNOBOL4 system specifies H-type literals, A, I, and, in one case, F conversion. Programmer formats
should only literals, X, T, and A conversion. Generally speaking, formats occur in ‘‘‘undigested’’’ form.
Formats used by OUTPUT are assembled by the FORMAT macro and are intended to be simply character
strings representing undigested formats. FORMAT may, however, assemble any convenient representation
of the format. Formats used by STPRNT are strings that may be formed during program execution and
hence must be accepted in their undigested form.

There are three other I/O related operations that correspond to their FORTRAN counterparts. These
are BKSPCE, ENFILE, and REWIND.

The easiest way to implement SNOBOL4 I/O is to use FORTRAN calling sequences for
corresponding operations and link the FORTRAN I/O library with the SNOBOL4 system. The main

- 1 -

-- --

difficulties usually occur in handling undigested formats. When questions arise as to what an operation
should do, FORTRAN conventions should be applied. A programmer should get the same results from
SNOBOL4 as from FORTRAN if, for example, a string of 200 characters is requested from a file
containing 80-character records.

2.2. Storage Requirements

The SNOBOL4 system itself is very large and SNOBOL4 programs typically require large amounts
of dynamically allocated storage. The magnitude of these requirements may be determined from the
implementation for the IBM System/360. This system requires a user partition of about 200K bytes
(characters) to run large programs. A partition of about 170K bytes permits execution of small programs.
Of the space required, the SNOBOL4 system and its internal data consume about 100K bytes, the
FORTRAN I/O routines consume about 14K bytes, and the remainder is devoted to dynamically allocated
storage. Allocated storage is referred to in machine-independent data units (see the next section) called
descriptors that occupy 8 bytes each on the IBM System/360. A production system should be able to
provide about 10,000 descriptors of dynamically allocated storage. Because of the large amount of space
required for dynamic storage, overlay techniques for the program itself can only partially reduce the
requirements for physical storage. Virtual memory systems may display poor performance if SNOBOL4 is
run with inadequate amounts of physical storage.

2.3. Other Considerations

SNOBOL4 makes few other demands on its operating system environment. Facilities should be
provided so that the SNOBOL4 system can be called and can return to the operating system under which it
operates. SNOBOL4 uses dump facilities to provide core dumps requested by the keyword &ABEND if
such facilities are available. Time and date information is used by SNOBOL4, but it is not essential.

3. Representation of Data

There are a few basic types of data used in the SNOBOL4 system, and a number of aggregates of the
basic types. The basic types of data are:

descriptors
specifiers
character strings
syntax table entries

3.1. Descriptors

Descriptors are used to represent all pointers, integers, and real numbers. A descriptor may be
thought of as the basic ‘‘‘word’’’ of SNOBOL4. Descriptors consist of three fixed-length fields:

address
flag
value

The size and position of these fields is determined from the data they must represent and the way that
they are used in the various operations. The following paragraphs describe some specific requirements.

3.1.1. Address Field

The address field of a descriptor must be large enough to address any descriptor, specifier, or
program instruction within the SNOBOL4 system. (Descriptors do not have to address individual
characters of strings. See Section 3.2.) The address field must also be large enough to contain any integer
or real number (including sign) that is to be used in a SNOBOL4 program. The address field is the most
frequently used field of a descriptor and is used frequently for addressing and integer arithmetic and it
should be positioned so that these operations can be performed efficiently.

- 2 -

-- --

3.1.2. Flag Field

The flag field is used to represent the states of a number of disjoint conditions and is treated as a set
of bits that are individually tested, turned on, and turned off. Five flag bits used in SNOBOL4.

3.1.3. Value Field

The value field is used to represent a number of internal quantities that are represented as unsigned
integers (magnitudes). These quantities the encoded representation of source-language data types, the
length of strings, and the size (in address units) of various data aggregates. The value field need not be as
large as the address field, but it must be large enough to represent the size of the largest data aggregate that
can be formed.

On the IBM System/360, a descriptor is two words (eight bytes). The first word is the address field.
The second word consists of one byte for the flag field and three bytes for the value field. The three bytes
(24 bits) for the value field permits representation of data objects as large as 224-1 bytes. On the other
hand, two bytes would limit objects to 216-1 bytes. Since on the IBM System/360 there are eight bytes per
descriptor, 216-1 bytes would limit objects to 8191 descriptors, which would be too restrictive. For
machines with fewer address units per descriptor, the value field need not be as large.

3.2. Specifiers

Specifiers are used to refer to character strings. Almost all operations performed on character strings
are handled through operations on specifiers. All specifiers are the same size and have five fields:

address
flag
value
offset
length

Specifiers and descriptors may be stored in the same area indiscriminately, and are indistinguishable
to many processes in the SNOBOL4 system. As a result, specifiers are composed of two descriptors. One
descriptor is used in the standard way to provide the address, flag, and value fields. The other descriptor is
used in a nonstandard way. Its address field is used to represent the offset of an individual character from
the address given in the specifier’s address field. The value field of this other descriptor is used for the
length.

3.3. Character Strings

Character strings are represented in packed format, as many characters per descriptor as possible.
Storage of character strings in SNOBOL4 dynamic storage is always in storage units that are multiples of
descriptors.

3.4. Syntax Table Entries

Syntax tables are necessarily somewhat machine dependent. Consequently, implementation of these
tables is done individually for each machine. A description of the table requirements is given in the next
section.

4. Syntax Tables and Character Graphics

4.1. Characters

The SNOBOL4 language permits the use of any character that can be represented on a particular
machine. There are certain characters that have syntactic significance in the source language. The card
codes, graphics, and internal representations vary from machine to machine. For each machine,
representations are chosen for each of the syntactically significant characters. Such characters and sets of
characters are given descriptive names to avoid dependence on a particular machine. In the list that
follows, ASCII graphics are used as a point of reference.

- 3 -

-- --

function name graphics

ALPHANUMERIC digit and letter ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789

AT operator @
BLANK separator and operator blank and tab
BREAK dot and underscore .
CMT comment card *
CNT continue card +.
COLON goto designator and :

dimension separator
COMMA argument separator ,
CTL control card -
DOLLAR operator $
DOT operator .
DQUOTE literal delimiter "
EOS statement terminator ;
EQUAL assignment =
FGOSYM failure goto designator F
KEYSYM operator &
LEFTBR reference and goto delimiter <[
LEFTPAREN expression delimiter (
LETTER letter ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz
MINUS operator -
NOTSYM operator ˜
NUMBER digit 0123456789
ORSYM operator |
PERCENT operator %
PLUS operator +
POUND operator #
QUESYM operator ?
RAISE operator ˆ
RIGHTBR reference and goto delimiter >]
RIGHTPAREN expression delimiter)
SGOSYM success goto designator S
SLASH operator /
SQUOTE literal delimiter ’
STAR operator *
TERMINATOR expression terminator ;)>,] blank and tab

4.2. Syntax Tables

The lexical syntax of the SNOBOL4 language is analyzed using the operation STREAM (q.v.) which
is driven from syntax tables. The syntax tables provide a representation of a finite state machine used
during lexical analysis. See Reference 3 in Appendix B for a more detailed discussion.

In a syntax table there is an entry for each character at a position corresponding to the numerical
value of the internal encoding of that character. The syntax table entry specifies the action to be taken if
that character is encountered. The actions are:

1. CONTIN, indicating that the current syntax table is to be used for processing the next character.

2. GOTO(TABLE), indicating that TABLE is to be used for processing the next character.

- 4 -

-- --

3. STOP, indicating that STREAM should terminate with the last character examined to be included in
the accepted string.

4. STOPSH, indicating the STREAM should terminate with the last character examined not to be included
in the string accepted.

5. ERROR, indicating that STREAM should terminate with an error indication.

6. PUT(ADDRESS), indicating that ADDRESS is to be placed in the address field of the descriptor
STYPE.

The classes of characters for which actions are to be taken are given in FOR designations.
CONTIN and GOTO(TABLE) provide information about the next table to use and are typically
represented by addresses in syntax table entries. STOP, STOPSH, and ERROR are type indicators used
to stop the streaming process.

SNABTB is used in pattern matching for ANY(CS), BREAK(CS), NOTANY(CS), and
SPAN(CS). SNABTB is modified during execution by the macros CLERTB and PLUGTB (q.v.). The
other syntax tables are not modified.

Two representative syntax table descriptions follow. A complete list is given in Appendix A.

BEGIN IBLKTB
FOR(BLANK) GOTO(FRWDTB)
FOR(EOS) PUT(EOSTYP) STOP
ELSE ERROR
END IBLKTB

BEGIN VARBTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR
END VARBTB

The syntax tables for the IBM System/360 implementation are generated from such descriptions
using a (SNOBOL4) program in which the character classes and the order of the internal character codes
are parameters. The use of some kind of automatic technique to generate the syntax tables is advisable,
both to ensure accuracy and because of the large amount of data involved.

5. Describing the Macros

This section explains the method of describing the macros. The instructions for implementing an
operation usually consist of a description of the operation’s function, figures indicating data relating to the
operation, and programming notes that contain details and references to other relevant information. The
figures consist of stylized representations of the various data objects and the fields within them.

5.1. Diagrammatic Representation of Data

The representation of a descriptor at LOC1 is shown below. A, F, and V indicate the values of the
address, flag, and value fields.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC1 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

The representation of a specifier at LOC2 is shown below. A, F, V, O, and L indicate the values
of the address, flag, value, offset, and length fields.

- 5 -

-- --

iii
LOC2 A cc F cc V cc O cc Liiicc cc

Character strings have two representations depending on how many characters are relevant to the
description. The short representation of a string of L characters is shown below. C1 and CL are the
first and last characters, respectively. In this representation, the intermediate characters are indicated by
dots.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC3 C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

The long representation of a string of L characters at LOC4 is shown below. CJ and CJ+1 are
relevant characters in the interior of the string. The long representation is used when such interior
characters must be specified.

iii
LOC4 C1 cc ... cc CJ cc CJ+1 cc ... cc CLiiicc cc

The representation of a syntax table entry is shown below. A, T, and P indicate values of the next
table address, type indicator, and put field as specified by the PUT action.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC5 A cc T cc Piiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Various values and expressions may occur in the fields of data objects. Fields are left blank when
their value is not used in an operation. In data objects that are changed by an operation, unchanged fields
are left blank. For example, if the figure below referred to a descriptor to be changed, the new value of the
address field would be A2, and no other fields would be changed.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Letters are used as abbreviations to differentiate the values that may appear in a field. The seven
basic fields are indicated by the letters A, F, V, O, L, T, and P. Numerical suffixes (which may be
thought of as subscripts) are used as necessary to distinguish between values of the same type. Thus, for
example, A1, A32, and AN might be used to refer to addresses, F1 and F2 to flags, and so on. To
make further distinctions where appropriate, I and R are used to indicate integers and real numbers,
respectively.

5.2. Branch Points

Program labels are included in the argument lists of many macros. These addresses are points to
which control may be transferred, depending on data supplied to the macros. In general, some or all of the
branch points may be omitted in a macro call. An omitted branch point signifies that control is to pass to
the next macro in line if the condition corresponding to the omitted branch point is satisfied. For example
ACOMP is called in the following forms:

ACOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOC
ACOMP DESCR1,DESCR2,GTLOC,EQLOC
ACOMP DESCR1,DESCR2,GTLOC
ACOMP DESCR1,DESCR2,GTLOC,,LTLOC
ACOMP DESCR1,DESCR2,,EQLOC,LTLOC
ACOMP DESCR1,DESCR2,,EQLOC
ACOMP DESCR1,DESCR2,,,LTLOC

where GTLOC, EQLOC, and LTLOC are addresses to which ACOMP may branch. ACOMP is not called
with all three branch points omitted, since that is not a meaningful operation. Other macros such as SUM

- 6 -

-- --

(q.v.) are often called with all branch points omitted.

Implementation of the macros must take omission of branch points into consideration. Alternate
expansions, conditioned by the omission of branch points, may be used to generate more efficient code.

5.3. Abbreviations

Several abbreviations are used in the descriptions that follow. These are:

1. D is used for the addressing width of a descriptor. On the IBM System/360, the machine addressing
unit is one byte, and D is eight.

2. S is used for the addressing width of a specifier; S = 2D.

3. CPD is used for the number of characters stored per descriptor.

4. I is used for (signed) integers.

5. R is used for real numbers.

6. E is used for the address width of a syntax table entry.

7. Z is used to indicate the number of the last character in collating sequence. Characters are
‘‘‘numbered’’’ from 0 to Z.

The data type codes I and R are defined in the SIL source program. The other codes are machine
dependent. See the COPY macro. by R and I respectively. These symbols are defined in

5.4. Programming Notes

Programming notes are provided for some macro operations. The notes are intended to point out
special cases, indicate implementation pitfalls, and to provide information about conditions that can be
used to improve the efficiency of the implementation.

6. The Macros

1. ACOMP (address comparison)

iii
ACOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOCiiicc cc

ACOMP is used to compare the address fields of two descriptors. The comparison is arithmetic with
A1 and A2 being considered as signed integers. If A1 > A2, transfer is to GTLOC. If A1 = A2,
transfer is to EQLOC. If A1 < A2, transfer is to LTLOC.

Data Input to ACOMP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 7 -

-- --

Programming Notes:

1. A1 and A2 may be relocatable addresses.

2. See also LCOMP, ACOMPC, AEQL, AEQLC, and AEQLIC.

2. ACOMPC (address comparison with constant)

ii
ACOMPC DESCR,N,GTLOC,EQLOC,LTLOCiicc cc

ACOMPC is used to compare the address field of a descriptor to a constant. The comparison is
arithmetic with A being considered as a signed integer. If A > N, transfer is to GTLOC. If A = N,
transfer is to EQLOC. If A < N, transfer is to LTLOC.

Data Input to ACOMPC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. A may be a relocatable address.

2. N is never negative.

3. N is often 0.

4. See also ACOMP, AEQL, AEQLC, and AEQLIC.

3. ADDLG (add to specifier length)

ii
ADDLG SPEC,DESCRiicc cc

ADDLG is used to add an integer to the length of a specifier.

Data Input to ADDLG:iii
SPEC cc cc cc cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by ADDLG:iii
SPEC cc cc cc cc L+Iiiicc cc

- 8 -

-- --

Programming Notes:

1. I is always positive.

4. ADDSIB (add sibling to tree node)

ii
ADDSIB DESCR1,DESCR2iicc cc

ADDSIB is used to add a tree node as a sibling to another node.

Data Input to ADDSIB:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+FATHER A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+RSIB A4 cc F4 cc V4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A3+CODE cc cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by ADDSIB:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+RSIB A4 cc F4 cc V4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+FATHER A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+RSIB A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A3+CODE cc cc I+1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. ADDSIB is only used by compilation procedures.

2. FATHER, RSIB, and CODE are symbols defined in the source program.

3. See also ADDSON and INSERT.

- 9 -

-- --

5. ADDSON (add son to tree node)

ii
ADDSON DESCR1,DESCR2iicc cc

ADDSON is used to add a tree node as a son to another node.

Data Input to ADDSON:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+LSON A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+CODE cc cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by ADDSON:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+FATHER A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+RSIB A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+LSON A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+CODE cc cc I+1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. ADDSON is only used by compilation procedures.

2. FATHER, LSON,RSIB, and CODE are symbols defined in the source program.

3. See also ADDSIB and INSERT.

6. ADJUST (compute adjusted address)

ii
ADJUST DESCR1,DESCR2,DESCR3iicc cc

ADJUST is used to adjust the address field of a descriptor.

- 10 -

-- --

Data Input to ADJUST:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2 A4 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by ADJUST:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A3+A4 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. A3 is always an address integer.

7. ADREAL (add real numbers)

ii
ADREAL DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

ADREAL is used to add two real numbers. If the result is out of the range available for real numbers,
transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to ADREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 R2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 R3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by ADREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 R2+R3 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also DVREAL, EXREAL, MNREAL, MPREAL, and SBREAL.

8. AEQL (addresses equal test)

ii
AEQL DESCR1,DESCR2,NELOC,EQLOCiicc cc

AEQL is used to compare the address fields of two descriptors. The comparison is arithmetic with
A1 and A2 being considered as signed integers: If A1 = A2, transfer is to EQLOC. Otherwise transfer
is to NELOC.

- 11 -

-- --

Data Input to AEQL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. A1 and A2 may be relocatable addresses.

2. See also VEQL, AEQLC, LEQLC, AEQLIC, ACOMP, and ACOMPC.

9. AEQLC (address equal to constant test)

iii
AEQLC DESCR,N,NELOC,EQLOCiiicc cc

AEQLC is used to compare the address field of a descriptor to a constant. The comparison is
arithmetic with A being considered as a signed integer. If A = N, transfer is to EQLOC. Otherwise
transfer is to NELOC.

Data Input to AEQLC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. A may be a relocatable address.

2. N is never negative.

3. N is often 0.

4. See also LEQLC, AEQL, AEQLIC, ACOMP, and ACOMPC.

10. AEQLIC (address equal to constant indirect test)

ii
AEQLIC DESCR,N1,N2,NELOC,EQLOCiicc cc

AEQLIC is used to compare an indirectly specified address field of a descriptor to a constant. The
comparison is arithmetic with A1 being considered as a signed integer. If A2 = N2, transfer is to
EQLOC. Otherwise transfer is to NELOC.

- 12 -

-- --

Data Input to AEQLIC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+N1 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. A2 may be a relocatable address.

2. N2 is never negative.

3. N1 is always zero.

4. See also AEQL, AEQLC, LEQLC, ACOMP, and ACOMPC.

11. APDSP (append specifier)

iii
APDSP SPEC1,SPEC2iiicc cc

APDSP is used to append one specified string to another specified string.

Data Input to APDSP:iii
SPEC1 A1 cc cc cc O1 cc L1iiicc cc

iii
SPEC2 A2 cc cc cc O2 cc L2iiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+O1 C11 cc ... cc C1L1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+O2 C21 cc ... cc C2L2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by APDSP:iii
SPEC1 A1 cc cc cc O1 cc L1+L2iiicc cc

iii
A1+O1 C11 cc ... cc C1L1 cc C21 cc ... cc C2L2iiicc cc

Programming Notes:

1. If L1 = 0, C21 is placed at A1+O1.

2. The storage following C1L1 is always adequate for C21...C2L2.

- 13 -

-- --

12. ARRAY (assemble array of descriptors)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
L ARRAY Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

ARRAY is used to assemble an array of descriptors.

Data Assembled by ARRAY:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
L 0 cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
L+(N-1)*D 0 cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. All fields of all descriptors assembled by ARRAY must be zero when program execution begins.

13. BKSIZE (get block size)

ii
BKSIZE DESCR1,DESCR2iicc cc

BKSIZE is used to determine the amount of storage occupied by a block or string structure. The flag
field of the descriptor at A distinguishes between string structures and blocks. If F contains the flag
STTL, then

F(V)=D*(4+[(V-1)/CPD+1])

where [V] is the integer part of V and CPD is the number of characters stored per descriptor. The
constant 4 occurs because there are 4 descriptors (including the title) in a string structure in addition to the
string itself. The expression in brackets represents the number of descriptors required for a string of V
characters. If F does not contain the flag STTL, then F(V) = V+D.

Data Input to BKSIZE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by BKSIZE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 F(V) cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also GETLTH.

- 14 -

-- --

14. BKSPCE (backspace record)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
BKSPCE DESCRiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

BKSPCE is used to back space one record on the file associated with unit reference number I.

Data Input to BKSPCE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also ENFILE and REWIND.

2. Refer to Section 2.1 for a discussion of unit reference numbers.

15. BRANCH (branch to program location)

ii
BRANCH LOC,PROCiicc cc

BRANCH is used to alter the flow of program control by branching to LOC. If PROC is given, it is
the procedure in which LOC occurs. If PROC is omitted, LOC is in the current procedure.

Programming Notes:

1. See also PROC.

16. BRANIC (branch indirect with offset constant)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
BRANIC DESCR,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

BRANIC is used to alter the flow of program control by branching indirectly to the operation at
LOC.

Data Input to BRANIC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+N LOC cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. N is always zero

- 15 -

-- --

17. BUFFER (assemble buffer of blank characters)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC BUFFER Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

BUFFER is used to assemble a string of N blank characters.

Data Assembled by BUFFER:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC cc ... cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. All characters of the string assembled by BUFFER must be blank (not zero) when program execution
begins.

18. CHKVAL (check value)

iii
CHKVAL DESCR1,DESCR2,SPEC,GTLOC,EQLOC,LTLOCiiicc cc

CHKVAL is used to compare an integer to the length of a specifier plus another integer. If L+I2 >
I1, transfer is to GTLOC. If L+I2 = I1, transfer is to EQLOC. If L+I2 < I1, transfer is to
LTLOC.

Data Input to CHKVAL:iii
SPEC cc cc cc cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 I1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. I1, I2, and L are always positive integers.

2. CHKVAL is used only in pattern matching.

19. CLERTB (clear syntax table)

iii
CLERTB TABLE,KEYiiicc cc

CLERTB is used to set the indicator fields of all entries of a syntax table to a constant. KEY may be
one of four values:

- 16 -

-- --

CONTIN
ERROR
STOP
STOPSH

The indicator field of each entry of TABLE is set to T where T is the indicator that corresponds to
the value of KEY.

Data Altered by CLERTB for ERROR, STOP, or STOPSH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE cc T cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE+Z*E cc T cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by CLERTB for CONTIN:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE TABLE cc 0 cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE+Z*E TABLE cc 0 cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See Section 4.2.

2. See also PLUGTB.

20. COPY (copy file into assembly)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
COPY FILEiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

COPY is used to copy a file of machine-dependent data into the source program. COPY occurs three
times in the assembly:

COPY MDATA
COPY MLINK
COPY PARMS

MLINK and PARMS are copied at the beginning of the SNOBOL4 assembly. MDATA is copied in the data
region.

MDATA is a file of machine-dependent data. It contains data used in the implementation of the
macros and for strings that depend on the character set of an individual machine or that represent other
problems that prevent a machine-independent representation. These are:

1. ALPHA, a string that consists of all characters arranged in the order of their internal numerical

- 17 -

-- --

representation (collating sequence).

2. AMPST, a string consisting of a single ampersand, or whatever character is used to represent the
keyword operator in the source language.

3. COLSTR, a string of two characters consisting of a colon followed by a blank.

4. QTSTR, a string consisting of a single quotation mark, or whatever character is used to represent a
quotation mark in the source language.

These strings of characters are pointed to by the specifiers ALPHSP, AMPSP, COLSP, and QTSP
respectively.

MLINK is a file of entry points and external symbol names that describe linkages used to access
machine-language subroutines and I/O packages.

PARMS is a file of machine-dependent constants (equivalences). It contains constants used in the
implementation of the macros and definitions of symbols. These are:

1. ALPHSZ, the number of characters in the character set for the machine. (ALPHSZ is 256 for the IBM
System/360.)

2. CPA, the number of characters per machine addressing unit. (CPA is 1 for the IBM System/360, i.e.,
one character per byte.)

3. DESCR, the address width of a descriptor.

4. FNC, a flag used to identify function descriptors.

5. MARK, a flag used to identify descriptors that are marked titles.

6. PTR, a flag used to identify descriptors pointing into SNOBOL4 dynamic storage.

7. SIZLIM, the value of the largest integer that can be stored in the value field of a descriptor.

8. SPEC, the address width of a specifier.

9. STTL, a flag used to identify descriptors that are titles of string structures.

10. TTL, a flag used to identify descriptors that are titles of blocks.

11. UNITI, the number of the standard input unit. UNITI is 5 for the IBM System/360 implementation.

12. UNITO, the number of the standard print output unit. UNITO is 6 for the IBM System/360
implementation.

13. UNITP, the number of the standard punch output unit. UNITP is 7 for the IBM System/360
implementation.

CSTACK and OSTACK, the current end old stack pointers, respectively, should be defined in one of
the COPY files. These pointers may either be in registers or in the address fields of descriptors, depending
on how the stack management macros are implemented (see PUSH and RCALL, e.g.). If these pointers
are implemented as registers, they should be defined in PARMS. If they are implemented in storage
locations, they should be defined in MDATA.

- 18 -

-- --

Programming Notes:

1. COPY may be implemented in a variety of ways. COPY may, for example, simply expand into the
data required, depending on the value of its argument as given above.

2. Any of the COPY segments can be used to incorporate other machine-dependent data.

21. CPYPAT (copy pattern)

iii
CPYPAT DESCR1,DESCR2,DESCR3,DESCR4,DESCR5,DESCR6iiicc cc

CPYPAT is used to copy a pattern. First set

R1 = A1
R2 = A2
R3 = A6

where R1, R2, and R3 are temporary locations. Sections of the pattern are copied for successive values
of R1 and R2. After copying each section, set

R3 = R3-(1+V7)*D

Then set

R1 = R1+(1+V7)*D
R2 = R2+(1+V7)*D

If R3 > 0, continue, copying the next section. Otherwise the operation is complete. The final value of
R1 is inserted in the address field of DESCR1.

The functions F1 and F2 are defined as follows:

F1(X) = 0 if X = 0
F1(X) = X+A4 otherwise

F2(X) = A5 if X = 0
F2(X) = X+A4 otherwise

- 19 -

-- --

Initial Data Input to CPYPAT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR4 A4 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR5 A5 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR6 A6 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Input to CPYPAT for Successive Values of R2:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
R2+D A7 cc F7 cc V7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
R2+2D A8 cc 0 cc V8iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
R2+3D A9 cc 0 cc V9iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by CPYPAT for Successive Values of R1:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
R1+D A7 cc F7 cc V7iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
R1+2D F1(A8) cc 0 cc F2(V8)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
R1+3D A9+A3 cc 0 cc V9+A3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Additional Data Input for Successive Values of R2 if V7 = 3:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
R2+4D A10 cc F10 cc V10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Additional Data Altered for Successive Values of R1 if V3 = 7:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
R1+4D A10 cc F10 cc V10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered when Copying is Complete:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 R1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 20 -

-- --

22. DATE (get date)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DATE SPECiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

DATE is used to obtain the current date. A character representation of the current date is placed in
BUFFER.

Data Altered by DATE:iii
SPEC BUFFER cc 0 cc 0 cc 0 cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
BUFFER C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. The choice of representation for the date is not important so far as the source language is concerned.
Thus

April 1, 1981
04/01/81
4:1:81
81.092

are all acceptable.

2. BUFFER is local to DATE and its old contents may be overwritten by a subsequent use of DATE.

3. DATE is used only in the SNOBOL4 DATE function.

4. Implementation of DATE, as such, is not essential. In this case, DATE should set the length of SPEC
to zero and do nothing else.

23. DECRA (decrement address)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DECRA DESCR,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

DECRA is used to decrement the address field of a descriptor. A is considered as a signed integer.

Data Input to DECRA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by DECRA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A-N cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 21 -

-- --

Programming Notes:

1. A maybe a relocatable address.

2. N is always positive.

3. N is often 1 or D.

4. A-N may be negative.

5. See also INCRA.

24. DEQL (descriptor equal test)

ii
DEQL DESCR1,DESCR2,NELOC,EQLOCiicc cc

DEQL is used to compare two descriptors. If A1 = A2, F1 = F2, and V1 = V2, transfer is to
EQLOC. Otherwise transfer is to NELOC.

Data Input to DEQL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. All fields of the two descriptors must be identical for transfer to EQLOC.

25. DESCR (assemble descriptor)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC DESCR A,F,Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

DESCR assembles a descriptor with specified address, flag, and value fields.

Data Assembled by DESCR:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. Any or all of A, F, and V may be omitted. A zero field must be assembled when the corresponding
argument is omitted.

- 22 -

-- --

26. DIVIDE (divide integers)

ii
DIVIDE DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

DIVIDE is used to divide one integer by another. Any remainder is discarded. That is, the result is
truncated, not rounded. If I = 0, transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to DIVIDE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by DIVIDE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A/I cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. A may be a relocatable address.

27. DVREAL (divide real numbers)

ii
DVREAL DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

DVREAL is used to divide one real number by another. If R3 = 0 or the result is out of the range
available for real numbers, transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to DVREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 R2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 R3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by DVREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 R2/R3 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. In addition to use in source-language arithmetic, DVREAL is used in the computation of statistics
published at the end of a SNOBOL4 run.

2. See also ADREAL, EXREAL, MNREAL, MPREAL, and SBREAL.

- 23 -

-- --

28. END (end assembly)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ENDiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

END is used to terminate assembly of the SNOBOL4 system. It occurs only once and is the last card
of the assembly.

29. ENDEX (end execution of SNOBOL4 run)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ENDEX DESCRiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

ENDEX is used to terminate execution of a SNOBOL4 run. ENDEX is the last instruction executed
and is responsible for returning properly to the environment that initiated the SNOBOL4 run. If I is
nonzero, a post-mortem dump of user core should be given.

Data Input to ENDEX:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. If a dump is not given, the keyword &ABEND will not have its specified effect. Nothing else will be
affected.

2. On the IBM System/360, if I is nonzero, an abend dump is given with a user code of I.

3. See also INIT.

30. ENFILE (write end of file)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ENFILE DESCRiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

ENFILE is used to write an end-of-file on (close) the file associated with unit reference number I.

Data Input to ENFILE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also BKSPCE and REWIND.

2. Refer to Section 2.1 for a discussion of unit reference numbers.

- 24 -

-- --

31. EQU (symbol equivalence)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SYMBOL EQU Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

EQU is used to assign, at assembly time, the value of N to SYMBOL.

32. EXPINT (exponentiate integers)

ii
EXPINT DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

EXPINT is used to raise an integer to an integer power. If I1 = 0 and I2 is not positive, or if the
result is out of the range available for integers, transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to EXPINT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I1 cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 I2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by EXPINT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 I1**I2 cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

33. EXREAL (exponentiate real numbers)

ii
EXREAL DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

EXREAL is used to raise a real number to a real power. If the result is not a real number or is out of
the range available for real numbers, transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to EXREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 R1 cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 R2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by EXREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 R1**R2 cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 25 -

-- --

34. FORMAT (assemble format string)

iii
LOC FORMAT ’C1...CL’iiicc cc

FORMAT is used to assemble the characters of a format.

Data Assembled by FORMAT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. The characters assembled by FORMAT are treated as an ‘‘‘undigested’’’ format by FORTRAN IV
routines.

35. FSHRTN (foreshorten specifier)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
FSHRTN SPEC,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

FSHRTN is used to exclude initial characters from a string specification.

Data Input to FSHRTN:iii
SPEC cc cc cc O cc Liiicc cc

Data Altered by FSHRTN:iii
SPEC cc cc cc O+N cc L-Niiicc cc

Programming Notes:

1. L-N is never negative.

2. See also REMSP.

36. GETAC (get address with offset constant)

ii
GETAC DESCR1,DESCR2,Niicc cc

GETAC is used to get an address field with an offset constant.

- 26 -

-- --

Data Input to GETAC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+N A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by GETAC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. N may be negative.

2. See also PUTAC, GETDC, and PUTDC.

37. GETBAL (get parenthesis balanced string)

ii
GETBAL SPEC,DESCR,FLOC,SLOCiicc cc

GETBAL is used to get the specification of a balanced substring. The string starting at CL+1 and
ending at CL+N is examined to determine the shortest balanced substring CL+1,...,CL+J. J is
determined according to the following rules:

If CL+1 is not a parenthesis, then J = 1.

If CL+1 is a left parenthesis, then J is the least integer such that CL+1...CL+J is balanced with
respect to parentheses in the usual algebraic sense.

If CL+1 is a right parenthesis, or if no such balanced string exists, transfer is to FLOC. Otherwise SPEC
is modified as indicated and transfer is to SLOC.

Data Input to GETBAL:iii
SPEC A cc cc cc O cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR N cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
A+O C1 cc ... cc CL cc CL+1 cc ... cc CL+Niiicc cc

Data Altered by GETBAL:iii
SPEC A cc cc cc O cc L+Jiiicc cc

- 27 -

-- --

38. GETD (get descriptor)

ii
GETD DESCR1,DESCR2,DESCR3iicc cc

GETD is used to get a descriptor.

Data Input to GETD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+A3 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by GETD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also GETDC, PUTD, and PUTDC.

39. GETDC (get descriptor with offset constant)

ii
GETDC DESCR1,DESCR2,Niicc cc

GETDC is used to get a descriptor with an offset constant.

Data Input to GETDC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+N A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by GETDC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also GETD, PUTDC, and PUTD.

- 28 -

-- --

40. GETLG (get length of specifier)

ii
GETLG DESCR,SPECiicc cc

GETLG is used to get the length of a specifier.

Data Input to GETLG:iii
SPEC cc cc cc cc Liiicc cc

Data Altered by GETLG:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR L cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also PUTLG.

41. GETLTH (get length for string structure)

ii
GETLTH DESCR1,DESCR2iicc cc

GETLTH is used to determine the amount of storage required for a string structure. The amount of
storage is given by the formula

F(L)=D*(3+[(L-1)/CPD+1])

where [L] is the integer part of L and CPD is the numbers of characters stored per descriptor. The
constant 3 accounts for the three descriptors in a string structure in addition to the string itself. The
expression in brackets represents the number of descriptors required for a string of L characters.

Data Input to GETLTH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 L cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by GETLTH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 F(L) cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also BKSIZE.

- 29 -

-- --

42. GETSIZ (get size)

ii
GETSIZ DESCR1,DESCR2iicc cc

GETSIZ is used to get the size from the value field of a title descriptor.

Data Input to GETSIZ:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by GETSIZ:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 V cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also SETSIZ.

43. GETSPC (get specifier with constant offset)

ii
GETSPC SPEC,DESCR,Niicc cc

GETSPC is used to get a specifier.

Data Input to GETSPC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
A1+N A cc F cc V cc O cc Liiicc cc

Data Altered by GETSPC:iii
SPEC A cc F cc V cc O cc Liiicc cc

Programming Notes:

1. See also PUTSPC.

- 30 -

-- --

44. INCRA (increment address)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
INCRA DESCR,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

INCRA is used to increment the address field of a descriptor.

Data Input to INCRA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by INCRA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A+N cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. A may be a relocatable address.

2. A is never negative.

3. N is always positive.

4. N is often 1 or D.

5. See also DECRA and INCRV.

45. INCRV (increment value field)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
INCRV DESCR,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

INCRV is used to increment the value field of a descriptor. I is considered as an unsigned
(nonnegative) integer.

Data Input to INCRV:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by INCRV:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc cc I+Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 31 -

-- --

Programming Notes:

1. N is always positive.

2. N is often 1.

3. See also INCRA.

46. INIT (initialize SNOBOL4 run)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
INITiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

INIT is used to initialize a SNOBOL4 run. INIT is the first instruction executed and is responsible
for performing any initialization necessary. The operation is machine and system dependent. Typically,
INIT sets program masks and the values of vertain registers.

In addition to any initialization required for a particular system and machine, INIT also performs
the following initialization for the SNOBOL4 system. Dynamic storage is initialized. The address fields of
FRSGPT and HDSGPT are set to point to the first descriptor in dynamic storage. The address field of
TLSGP1 is set to the first descriptor past the end of dynamic storage. Space for dynamic storage may be
preallocated or obtained from the operating system by INIT. The timer is initialized for subsequent use
by the MSTIME macro (q.v.).

Programming Notes:

1. See also ENDEX.

47. INSERT (insert node in tree)

ii
INSERT DESCR1,DESCR2iicc cc

INSERT is used to insert a tree node above another node.

Data Input to INSERT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+FATHER A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A3+LSON A4 cc F4 cc V4iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+CODE cc cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 32 -

-- --

Data Altered by INSERT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+FATHER A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A4+RSIB A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+FATHER A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+LSON A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+CODE cc cc I+1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. Since the fields of the descriptor at A1+FATHER are used in the data to be altered, care should be
taken not to modify this descriptor until its former values have been used.

2. INSERT is only used by compilation procedures.

3. FATHER, LSON, RSIB, and CODE are symbols defined in the source program.

4. See also ADDSIB and ADDSON.

48. INTRL (convert integer to real number)

ii
INTRL DESCR1,DESCR2iicc cc

INTRL is used to convert a (signed) integer to a real number. R(I) is the real number
corresponding to I.

Data Input to INTRL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by INTRL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 R(I) cc 0 cc Riiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. R is a symbol defined in the source program and is the code for the real data type.

- 33 -

-- --

49. INTSPC (convert integer to specifier)

ii
INTSPC SPEC,DESCRiicc cc

INTSPC is used to convert a (signed) integer to a specified string.

Data Input to INTSPC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by INTSPC:iii
SPEC BUFFER cc 0 cc 0 cc O cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
BUFFER+O C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. C1...CL should be a ‘‘‘normalized’’’ string corresponding to the integer I. That is, it should
contain no leading zeroes and should begin with a minus sign if I is negative.

2. BUFFER is local to INTSPC and its contents may be overwritten by a subsequent use of INTSPC.

3. See also SPCINT.

50. ISTACK (initialize stack)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ISTACKiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

ISTACK is used to initialize the system stack.

Data Altered by ISTACK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OSTACK 0 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK STACK cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. STACK is a program symbol whose value is the address of the first descriptor of the system stack.

2. See also PSTACK, RCALL, and RRTURN.

- 34 -

-- --

51. LCOMP (length comparison)

iii
LCOMP SPEC1,SPEC2,GTLOC,EQLOC,LTLOCiiicc cc

LCOMP is used to compare the lengths of two specifiers. If L1 > L2, transfer is to GTLOC. If
L1 = L2, transfer is to EQLOC. If L1 < L2, transfer is to LTLOC.

Data Input to LCOMP:iii
SPEC1 cc cc cc cc L1iiicc cc

iii
SPEC2 cc cc cc cc L2iiicc cc

Programming Notes:

1. See also ACOMP, RCOMP, and LEQLC.

52. LEQLC (length equal to constant test)

ii
LEQLC SPEC,N,NELOC,EQLOCiicc cc

LEQLC is used to compare the length of a specifier to a constant. If L = N, transfer is to EQLOC.
Otherwise transfer is to NELOC.

Data Input to LEQLC:iii
SPEC cc cc cc cc Liiicc cc

Programming Notes:

1. L and N are never negative.

2. See also LCOMP, AEQLC, and AEQLIC.

53. LEXCMP (lexical comparison of strings)

iii
LEXCMP SPEC1,SPEC2,GTLOC,EQLOC,LTLOCiiicc cc

LEXCMP is used to compare two strings lexicographically (i.e. according to their alphabetical
ordering). If C11...C1N1 < C21...C2M, transfer is to GTLOC. If C11...C1N1 =
C21...C2M, transfer is to EQLOC. If C11...C1N1 > C21...C2M, transfer is to LTLOC.

- 35 -

-- --

Data Input to LEXCMP:iii
SPEC1 A1 cc cc cc O1 cc Niiicc cc

iii
SPEC2 A2 cc cc cc O2 cc Miiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+O1 C11 cc ... cc C1Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+O2 C21 cc ... cc C2Miiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. The lexicographical ordering is machine dependent and is determined by the numerical order of the
internal representation of the characters for a particular machine.

2. A string that is an initial substring of another string is lexicographically less than that string. That is
ABC is less than ABCA.

3. The null (zero-length) string is lexicographically less than any other string.

4. Two strings are equal if and only if they are of the same length and are identical character by
character.

5. By far the most frequent use of LEXCMP is to determine whether two strings are the same or different.
In these cases GTLOC and LTLOC will specify the same location or both be omitted. Because of the
frequency of such use, it is desirable to handle this case specially, since a test for equality usually can be
performed more efficiently than the general test.

54. LHERE (location here)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC LHEREiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

LHERE is used to establish the equivalence of LOC as the location of the next program instruction.

Programming Notes:

1. LHERE is equivalent to the familiar EQU *. Similarly

LOCLHERE
OP

is equivalent to

LOCOP

- 36 -

-- --

55. LINK (link to external function)

ii
LINK DESCR1,DESCR2,DESCR3,DESCR4,FLOC,SLOCiicc cc

LINK is used to link to an external function. A2 is a pointer to an argument list of N descriptors.
A4 is the address of the external function to be called. V1 is the date type expected for the resulting
value. The returned value is placed in DESCR1. If the external function signals failure, transfer is to
FLOC. Otherwise transfer is to SLOC.

Data Input to LINK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 cc cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 N cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR4 A4 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by LINK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. LINK is a system-dependent operation.

2. LINK need not be implemented if LOAD is not. In this case, LINK should branch to INTR10.

3. See also LOAD and UNLOAD.

56. LINKOR (link ‘‘‘or’’’ fields of pattern nodes)

ii
LINKOR DESCR1,DESCR2iicc cc

LINKOR links through ‘‘‘or’’’ (alternative) fields of pattern nodes until the end, indicated by a zero
field, is reached. This zero field is replaced by I.

- 37 -

-- --

Data Input to LINKOR:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D I1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D+I1 I2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D+IN 0 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by LINKOR:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D+IN I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

57. LOAD (load external function)

ii
LOAD DESCR,SPEC1,SPEC2,FLOC,SLOCiicc cc

LOAD is used to load an external function. C11...C1L1 is the name of the external function to
be loaded from a library. C21...C2L2 is the name of the library. A3 is the address of the entry point.
If the external function is loaded, transfer is to SLOC. Otherwise transfer is to FLOC.

Data Input to LOAD:iii
SPEC1 A1 cc cc cc O1 cc L1iiicc cc

iii
SPEC2 A2 cc cc cc O2 cc L2iiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+O1 C11 cc ... cc C1L1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+O2 C21 cc ... cc C2L2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by LOAD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 38 -

-- --

Programming Notes:

1. LOAD is a system-dependent operation.

2. LOAD need not be implemented as such. If it is not, the built-in function LOAD will not be available,
and an error comment should be generated by branching to UNDF.

3. On the IBM System/360, LOAD uses the OS macro LOAD to bring an external function from the
library whose DDNAME is specified by C21...C2L2.

4. See also LINK and UNLOAD.

58. LOCAPT (locate attribute pair by type)

ii
LOCAPT DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

LOCAPT is used to locate the ‘‘‘type’’’ descriptor of a descriptor pair on an attribute list.
Descriptors on an attribute list are in ‘‘‘type-value’’’ pairs. Odd-numbered descriptors are ‘‘‘type’’’
descriptors. The list starting at A+D is searched, comparing descriptors at A+D, A+3D, ... for the first
descriptor whose value is equal to the value of DESCR3. If a descriptor equal to DESCR3 is not found,
transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to LOCAPT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc cc 2K*Diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+D A11 cc F11 cc V11iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+D+2I*D A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2K*D cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by LOCAPT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A+2I*D cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 39 -

-- --

Programming Notes:

1. Note that the address of DESCR1 is set to one descriptor less then the descriptor that is located.

2. See also LOCAPV.

59. LOCAPV (locate attribute pair by value)

ii
LOCAPV DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

LOCAPV is used to locate the ‘‘‘value’’’ descriptor of a descriptor pair on an attribute list.
Descriptors on an attribute list are in ‘‘‘type-value’’’ pairs. Even-numbered descriptors are ‘‘‘value’’’
descriptors. The list starting at A+D is searched, comparing descriptors at A+2D, A+4D, ... for the first
descriptor whose value is equal to the value of DESCR3. If a descriptor equal to DESCR3 is not found,
transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to LOCAPV:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc cc 2K*Diiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D A12 cc F12 cc V12iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D+2I*D A3 cc F3 cc V3iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2K*D cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by LOCAPV:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A+2I*D cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. Note that the address of DESCR1 is set to two descriptors less than the descriptor that is located.

2. See also LOCAPT.

- 40 -

-- --

60. LOCSP (locate specifier to string)

ii
LOCSP SPEC,DESCRiicc cc

LOCSP is used to obtain a specifier to a string given in a string structure. CPD is the number of
characters per descriptor.

Data Input to LOCSP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by LOCSP if A ≠ O:iii
SPEC A cc F cc V cc 4*CPD cc Iiiicc cc

Data Altered by LOCSP if A = O:iii
SPEC cc cc cc cc 0iiicc cc

Programming Notes:

1. If A = O, the value of DESCR represents the null (zero-length) string and is handled as a special
case as indicated. The other fields of SPEC are unchanged in this case.

61. LVALUE (get least length value)

ii
LVALUE DESCR1,DESCR2iicc cc

LVALUE is used to get the least value of address fields in a chain of pattern nodes. The address field
of DESCR1 is set to I where

I = min(I0,...,IK)

- 41 -

-- --

Data Input to LVALUE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D N1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+3D I0 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+N1+2D N2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+N1+3D I1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+NK+2D 0 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+NK+3D IK cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by LVALUE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 I cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. I0,...,IK are all nonnegative.

2. A is never zero, but N1 may be.

62. MAKNOD (make pattern node)

iii
MAKNOD DESCR1,DESCR2,DESCR3,DESCR4,DESCR5,DESCR6iiicc cc

MAKNOD is used to make a node for a pattern. DESCR6 may be omitted. If it is, one less
descriptor is modified, but the two forms are otherwise the same.

Data Input to MAKNOD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR4 A4 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR5 A5 cc F5 cc V5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 42 -

-- --

Additional Data Input if DESCR6 is Given:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR6 A6 cc F6 cc V6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MAKNOD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+D A5 cc F5 cc V5iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+2D A4 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+3D A3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Additional Data Altered if DESCR6 is Given:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+4D A6 cc F6 cc V6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. As indicated, there are two forms of MAKNOD. If DESCR6 is given, an additional descriptor if
modified, but otherwise the two forms are the same.

2. DESCR1 must be changed last, since DESCR6 may be the same descriptor as DESCR1.

3. MAKNOD is used only for constructing patterns.

63. MNREAL (minus real number)

ii
MNREAL DESCR1,DESCR2iicc cc

MNREAL is used to change the sign of a real number.

Data Input to MNREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 R cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MNREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 -R cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. R may be negative.

2. See also MNSINT, ADREAL, DVREAL, EXREAL, MPREAL, and SBREAL.

- 43 -

-- --

64. MNSINT (minus integer)

ii
MNSINT DESCR1,DESCR2,FLOC,SLOCiicc cc

MNSINT is used to change the sign of an integer. If -I exceeds the maximum integer, transfer is to
FLOC. Otherwise transfer is to SLOC.

Data Input to MNSINT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MNSINT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 -I cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. I may be negative.

2. See also MNREAL.

65. MOVA (move address)

ii
MOVA DESCR1,DESCR2iicc cc

MOVA is used to move an address field from one descriptor to another.

Data Input to MOVA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MOVA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also MOVD and MOVV.

- 44 -

-- --

66. MOVBLK (move block of descriptors)

ii
MOVBLK DESCR1,DESCR2,DESCR3iicc cc

MOVBLK is used to move (copy) a block of descriptors.

Data Input to MOVBLK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 D*N cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+D A21 cc F21 cc V21iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+(D*N) A2N cc F2N cc V2Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MOVBLK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+D A21 cc F21 cc V21iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+(D*N) A2N cc F2N cc V2Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. Note that the descriptor at A1 is not altered.

2. The area into which the move is made may overlap the area from which the move is made. This only
occurs when A1 is less than A2. Care must be taken to handle this case correctly.

67. MOVD (move descriptor)

ii
MOVD DESCR1,DESCR2iicc cc

MOVD is used to move (copy) a descriptor from one location to another.

- 45 -

-- --

Data Input to MOVD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MOVD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also MOVA and MOVV.

68. MOVDIC (move descriptor indirect with constant offset)

iii
MOVDIC DESCR1,N1,DESCR2,N2iiicc cc

MOVDIC is used to move a descriptor that is indirectly specified with an offset constant.

Data Input to MOVDIC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+N2 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MOVDIC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+N1 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also MOVD, GETDC, and PUTDC.

69. MOVV (move value field)

ii
MOVV DESCR1,DESCR2iicc cc

MOVV is used to move a value field from one descriptor to another.

Data Input to MOVV:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 cc cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 46 -

-- --

Data Altered by MOVV:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 cc cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also MOVA and MOVD.

70. MPREAL (multiply real numbers)

ii
MPREAL DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

MPREAL is used to multiply two real numbers. If the result is out of the range available for real
numbers, transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to MPREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 R2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 R3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MPREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 R2*R3 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also ADREAL, DVREAL, EXREAL, MNREAL, and SBREAL.

71. MSTIME (get millisecond time)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
MSTIME DESCRiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

MSTIME is used to get the millisecond time.

Data Altered by MSTIME:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR TIME cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 47 -

-- --

Programming Notes:

1. The origin with respect to which the time is obtained is not important. The SNOBOL4 system deals
only with differences in times.

2. The time units should be milliseconds, but accuracy is not critical.

3. MSTIME is used in program tracing, the SNOBOL4 TIME function, and in statistics printed upon
termination of a SNOBOL4 run.

4. It is not critically important that MSTIME be implemented as such. If it is not, the address field of
DESCR should be set to zero also.

5. See also INIT.

72. MULT (multiply integers)

ii
MULT DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

MULT is used to multiply two integers. In the event of overflow, transfer is to FLOC. Otherwise,
transfer is to SLOC.

Data Input to MULT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 I3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MULT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 I2*I3 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. The test for success and failure is used in only two calls of this macro. Hence the code to make the
check is not needed in most cases.

2. DESCR1 and DESCR2 are often the same.

3. See also MULTC and DIVIDE.

- 48 -

-- --

73. MULTC (multiply address by constant)

ii
MULTC DESCR1,DESCR2,Niicc cc

MULTC is used to multiply an integer by a constant.

Data Input to MULTC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by MULTC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 I*N cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. I*N never exceeds the range available for integers.

2. DESCR1 and DESCR2 are often the same.

3. N is often D, which typically may be implemented by a , or simply by no operation if D is 1 for a
particular machine.

4. See also MULT.

74. ORDVST (order variable storage)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiii
ORDVSTiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

ORDVST is used to alphabetically order variables in SNOBOL4 dynamic storage. Variables are
organized in a number of bins, each bin containing a linked list of variables as shown below.
OBEND = OBSTRT+(OBSIZ-1)*D, where OBSIZ is the number of bins and is defined in the source
program.

Bins of Variables:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OBSTRT A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OBSTRT+D A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OBEND AN cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

The addresses A1, A2, ..., AN point to the first variable in each bin. A zero value for any of these
addresses indicates there are no variables in that bin. Within each bin, variables are linked together.

- 49 -

-- --

Relevant Parts of a Variable:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc cc Liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+3*D A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+4+D C1 cc ... cc ...iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.

L is the length of the string. The string itself begins at A+4*D and occupies as many descriptor
locations as are necessary. A1 is a link to the next variable in the bin. A zero value of A1 indicates the
end of the chain for that bin.

Programming Notes:

1. ORDVST is used only in ordering variables for a programmer-requested post-mortem dump of variable
storage. ORDVST need not be implemented as such, but may simply perform no operation. In this case,
the post-mortem dump will not be alphabetized, but will be otherwise correct.

2. If ORDVST is implemented, it is easiest to put all variables in one long chain starting at OBSTRT.
The address fields of the descriptors OBSTRT+D,...,OBSTRT+(OBSIZ-1)*D should then be set to zero.

3. Since dynamic storage may contain many variables, some care must be taken to assure that the sorting
procedure is not excessively slow. Variables whose values are the null string (zero address field and value
field containing the program symbol S) should be omitted from the sort.

4. Since any character may appear in a string, the value of I must be used to determine the length of the
string in a variable — characters following the string in the last descriptor are undefined.

75. OUTPUT (output record)

ii
OUTPUT DESCR,FORMAT,(DESCR1,...,DESCRN)iicc cc

OUTPUT is used to output a list of items according to FORMAT. The output is put on the file
associated with unit reference number I. The format C1...CL may specify literals and the conversion
of integers and real numbers given in the address fields A1,...,AN.

- 50 -

-- --

Data Input to OUTPUT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
FORMAT C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCRN AN cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also STPRNT.

76. PLUGTB (plug syntax table)

iii
PLUGTB TABLE,KEY,SPECiiicc cc

PLUGTB is used to set selected indicator fields in the entries of a syntax table to a constant. KEY
may be one of four values:

CONTIN
ERROR
STOP
STOPSH

The indicator fields of entries corresponding to C1,...,CL are set to T where T is the indicator that
corresponds to the value of KEY.

Data Input to PLUGTB:iii
SPEC A cc cc cc O cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+O C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by PLUGTB for ERROR, STOP, or STOPSH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE+E*C1 cc T cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE+E*CL cc T cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 51 -

-- --

Data Altered by PLUGTB for CONTIN:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE+E*C1 TABLE cc 0 cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE+E*CL TABLE cc 0 cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See Section 4.2.

2. See also CLERTB.

77. POP (pop descriptors from stack)

iii
POP (DESCR1,...,DESCRN)iiicc cc

POP is used to pop a list of descriptors off the system stack.

Data Input to POP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A-D*(N-1) AN cc FN cc VNiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by POP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A-(N*D) cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCRN AN cc FN cc VNiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 52 -

-- --

Programming Notes:

1. If A-(N*D) < STACK, stack underflow occurs. This condition indicates a programming error in
the implementation of the macro language. An appropriate diagnostic message indicating an error may be
obtained by transferring to the program location INTR10 if the condition is detected.

78. PROC (procedure entry)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
LOC1 PROC LOC2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

PROC is used to identify a procedure entry point. LOC2 may be omitted, in which case LOC1 is the
primary procedure entry point. If LOC2 is given, LOC1 is a secondary entry point in the procedure with
primary entry point LOC2.

Programming Notes:

1. Procedure entry points are referred to by RCALL, BRANIC, and BRANCH (in its two-argument
form).

2. In most implementations, PROC has no functional use and may be implemented as LHERE. For
machines that have a severely limited program basing range (such as the IBM System/360), PROC may be
used to perform required basing operations.

79. PSTACK (post stack position)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
PSTACK DESCRiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

PSTACK is used to post the current stack position.

Data Input to PSTACK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by PSTACK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A-D cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also ISTACK.

- 53 -

-- --

80. PUSH (push descriptors onto stack)

iii
PUSH (DESCR1,...,DESCRN)iiicc cc

PUSH is used to push a list of descriptors onto the system stack.

Data Input to PUSH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCRN AN cc FN cc VNiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by PUSH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A+(D*N) cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+D A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+(D*N) AN cc FN cc VNiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. If A+(D*N) > STACK+STSIZE, stack overflow occurs. Transfer should be made to the program
location OVER, which will result in an appropriate error termination.

2. See also SPUSH, POP, and SPOP.

81. PUTAC (put address with offset constant)

ii
PUTAC DESCR1,N,DESCR2iicc cc

PUTAC is used to put an address field into a descriptor located at a constant offset.

- 54 -

-- --

Data Input to PUTAC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by PUTAC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+N A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also GETAC, PUTVC, PUTD, and PUTDC.

82. PUTD (put descriptor)

ii
PUTD DESCR1,DESCR2,DESCR3iicc cc

PUTD is used to put a descriptor.

Data Input to PUTD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by PUTD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+A2 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also PUTDC, PUTAC, PUTVC, and GETD.

83. PUTDC (put descriptor with constant offset)

ii
PUTDC DESCR1,N,DESCR2iicc cc

PUTDC is used to put a descriptor at a location with a constant offset.

- 55 -

-- --

Data Input to PUTDC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by PUTDC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+N A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also PUTD, PUTAC, PUTVC, and GETD.

84. PUTLG (put specifier length)

ii
PUTLG SPEC,DESCRiicc cc

PUTLG is used to put a length into a specifier.

Data Input to PUTLG:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by PUTLG:iii
SPEC cc cc cc cc Iiiicc cc

Programming Notes:

1. I is always nonnegative.

2. See also GETLG.

85. PUTSPC (put specifier with offset constant)

ii
PUTSPC DESCR,N,SPECiicc cc

PUTSPC is used to put a specifier.

- 56 -

-- --

Data Input to PUTSPC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC A cc F cc V cc O cc Liiicc cc

Data Altered by PUTSPC:iii
A1+N A cc F cc V cc O cc Liiicc cc

Programming Notes:

1. See also GETSPC.

86. PUTVC (put value field with offset constant)

ii
PUTVC DESCR1,N,DESCR2iicc cc

PUTVC is used to put a value field into a descriptor at a location with a constant offset.

Data Input to PUTVC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 cc cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by PUTVC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+N cc cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also PUTAC, PUTDC, and PUTD.

87. RCALL (recursive call)

iii
RCALL DESCR,PROC,(DESCR1,...,DESCRN),(LOC1,...,LOCM)iiicc cc

RCALL is used to perform a recursive call. DESCR is the descriptor that receives the value upon
return from the call. PROC is the procedure being called. DESCR1,...,DESCRN are descriptors whose
values are passed to PROC. LOC1,...,LOCM are locations to transfer to upon return according to the return
exit signaled. The old stack pointer (A0) is saved on the stack, the current stack pointer becomes the old
stack pointer, and a new current stack pointer is generated as indicated. The return location LOC is saved
on the stack so that the return can be properly made. The values of the arguments DESCR1,...,DESCRN

- 57 -

-- --

are placed on the stack. Note that their order is the opposite of the order that would be obtained by using
PUSH.

At the return location LOC, code similar to that shown should be assembled. OP represents an
instruction that stores the value returned by PROC in DESCR.

Data Input to RCALL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OSTACK A0 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCRN AN cc FN cc VNiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by RCALL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+D A0 cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D LOC cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+3D AN cc FN cc VNiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+D*(2+N) A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A+(2+N)*D cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Return Code at LOC:

LOC OP DESCR1
BRANCH LOC1

.

.

.
BRANCH LOCM

- 58 -

-- --

Programming Notes:

1. RCALL and RRTURN are used in combination, and their relation to each other must be thoroughly
understood in order to implement them correctly.

2. Ordinarily OP is an instruction to store the value returned by RRTURN.

3. DESCR sometimes is omitted. In this case, any value returned by RRTURN is ignored and OP should
perform no operation.

4. (DESCR1,...,DESCRN) sometimes is entirely omitted. In this case N should be taken to be zero
in interpreting the figures.

5. Any of the locations LOC1,...,LOCM may be omitted. As in the case of operations with omitted
conditional branches, control then passes to the operation following the RCALL.

6. The return indicated by RRTURN may be M+1, in which case control is passed to the operation
following the RCALL.

7. The return indicated by RRTURN is never greater than M+1.

8. RCALL typically must save program state information. On the IBM System/360, this consists of the
location LOC and a base register for the procedure containing the RCALL. This information is pushed
onto the stack. In pushing information onto the stack, care must be taken to observe the rules concerning
the use of descriptors. The rest of the SNOBOL4 system treats the stack as descriptors, and the flag fields
of descriptors used to save program state information must be set to zero.

9. See also SELBRA.

88. RCOMP (real comparison)

iii
RCOMP DESCR1,DESCR2,GTLOC,EQLOC,LTLOCiiicc cc

RCOMP is used to compare two real numbers. If R1 > R2, transfer is to GTLOC. If R1 = R2,
transfer is to GTLOC. If R1 < R2, transfer is to LTLOC.

Data Input to RCOMP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 R1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 R2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also ACOMP and LCOMP.

- 59 -

-- --

89. REALST (convert real number to string)

ii
REALST SPEC,DESCRiicc cc

REALST is used to convert a real number into a specified string.

Data Input to REALST:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR R cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by REALST:iii
SPEC BUFFER cc 0 cc 0 cc 0 cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
BUFFER C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. C1...CL should represent the real number R in the SNOBOL4 fashion, containing a decimal point
and having at least one digit before the decimal point, zeroes being added as necessary. If R is negative,
the string should begin with a minus sign. For compatibility with real literals and data type conversions,
the real number should not be represented in exponent form, although very large or small real numbers
may require a large number of characters for their representation otherwise.

2. The number of digits (and hence the size of BUFFER) required is machine dependent and depends on
the range available for real numbers.

3. BUFFER is local to REALST and its contents may be overwritten by a subsequent use of REALST.

4. See also INTSPC and SPREAL.

90. REMSP (specify remaining string)

ii
REMSP SPEC1,SPEC2,SPEC3iicc cc

REMSP is used to obtain a remainder specifier resulting from the deletion of a specified length at the
end.

Data Input to REMSP:iii
SPEC2 A2 cc F2 cc V2 cc O2 cc L2iiicc cc

iii
SPEC3 cc cc cc cc L3iiicc cc

- 60 -

-- --

Data Altered by REMSP:iii
SPEC1 A2 cc F2 cc V2 cc O2+L3 cc L2-L3iiicc cc

Programming Notes:

1. SPEC1 and SPEC3 may be the same.

2. L2-L3 is never negative.

3. See also FSHRTN.

91. RESETF (reset flag)

ii
RESETF DESCR,FLAGiicc cc

RESETF is used to reset (delete) a flag from a descriptor.

Data Input to RESETF:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc F cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by RESETF:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc F-FLAG cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. Only FLAG is removed from the flags in F. Any other flags are left unchanged.

2. If F does not contain FLAG, no data is altered.

3. See also RSETFI and SETFI.

92. REWIND (rewind file)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
REWIND DESCRiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

REWIND is used to rewind the file associated with the unit reference number I.

Data Input to REWIND:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 61 -

-- --

Programming Notes:

1. Refer to Section 2.1 for a discussion of unit reference numbers.

2. See also BKSPCE and ENFILE.

93. RLINT (convert real number to integer)

ii
RLINT DESCR1,DESCR2,FLOC,SLOCiicc cc

RLINT is used to convert a real number to an integer. If the magnitude of R exceeds the magnitude
of the largest integer, transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to RLINT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 R cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by RLINT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 I(R) cc 0 cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. I(R) is the integer equivalent of the real number R.

2. The fractional part of R is discarded.

3. I is a symbol defined in the source program and is the code for the integer data type.

94. RPLACE (replace characters)

ii
RPLACE SPEC1,SPEC2,SPEC3iicc cc

RPLACE is used to replace characters in a string. SPEC2 specifies a set of characters to be
replaced. SPEC3 specifies the replacement to be made for the characters specified by SPEC2. The
replacement is described by the following rules. For I = 1,...,L

F(CI) = CI if CI ≠ C2J for any J (1 ≤ J ≤ L2)
F(CI) = C3J if CI = C2J for some J (1 ≤ J ≤ L2)

- 62 -

-- --

Data Input to RPLACE:iii
SPEC1 A1 cc cc cc O1 cc Liiicc cc

iii
SPEC2 A2 cc cc cc O2 cc L2iiicc cc

iii
SPEC3 A3 cc cc cc O3 cc L2iiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+O1 C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+O2 C21 cc ... cc C2L2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A3+O3 C31 cc ... cc C3L2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by RPLACE:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+O1 F(C1) cc ... cc F(CL)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. L may be zero.

2. If there are duplicate characters in C21...C2L2, replacement should be made corresponding to the
last instance of the character. That is, if

C2I = C2J = ... = C2K (I < J < K)

then

F(CI) = C3K

3. RPLACE is used only in the SNOBOL4 REPLACE function. It is not essential that RPLACE be
implemented as such. If it is not, RPLACE should transfer to UNDF to provide an appropriate error
comment.

95. RRTURN (recursive return)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
RRTURN DESCR,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

RRTURN is used to return from a recursive call. DESCR is the descriptor whose value is returned.
The stack pointers are repositioned as shown. At the location LOC, code similar to that shown is
assembled by the RRCALL to which return is to be made. OP represents an instruction that is used by
RRTURN to return the value of DESCR. Control is transferred to LOCN corresponding to N given in the
RRTURN.

- 63 -

-- --

Data Input to RRTURN:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+D A0 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D LOC cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by RRTURN:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
OSTACK A0 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc F1 cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Return Code at LOC:

LOC OP DESCR1
BRANCH LOC1

.

.

.
BRANCH LOCM

Programming Notes:

1. RCALL and RRTURN are used in combination, and their relation to each other must be thoroughly
understood.

2. DESCR may be omitted. In this case, OP should not be executed.

96. RSETFI (reset flag indirect)

ii
RSETFI DESCR,FLAGiicc cc

RSETFI is used to reset (delete) a flag from a descriptor that is specified indirectly.

Data Input to RSETFI:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc F cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 64 -

-- --

Data Altered by RSETFI:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc F-FLAG cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. Only FLAG is removed from the flags in F. Any other flags are left unchanged.

2. If F does not contain FLAG, no data is altered.

3. See also RESETF and SETFI.

97. SBREAL (subtract real numbers)

ii
SBREAL DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

SBREAL is used to subtract one real number from another. If the result is out of the range available
for real numbers, transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to SBREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 R2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 R3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SBREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 R2-R3 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also ADREAL, DVREAL, EXREAL, MNREAL, and MPREAL.

98. SELBRA (select branch point)

iii
SELBRA DESCR,(LOC1,...,LOCN)iiicc cc

SELBRA is used to alter the flow of program control by selecting a location from a list and branching
to it. Transfer is to LOCI corresponding to I.

Data Input to SELBRA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 65 -

-- --

Programming Notes:

1. Any of the locations may be omitted. As in the case of operations with omitted conditional branches,
control then passes to the operation following SELBRA.

2. If I = N+1, control is passed to the operation following SELBRA.

3. I is always in the range 1 ≤ I ≤ N+1. For debugging purposes, it may be useful to verify that I
is within this range.

99. SETAC (set address to constant)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SETAC DESCR,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

SETAC is used to set the address field of a descriptor to a constant.

Data Altered by SETAC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR N cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. N may be a relocatable address.

2. N is often 0, 1, or D.

3. N is never negative.

4. See also SETVC, SETLC, and SETAV.

100. SETAV (set address from value field)

ii
SETAV DESCR1,DESCR2iicc cc

SETAV sets the address field of one descriptor from the value field of another.

Data Input to SETAV:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 cc cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SETAV:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 V cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 66 -

-- --

Programming Notes:

1. See also SETAC

101. SETF (set flag)

ii
SETF DESCR,FLAGiicc cc

SETF is used to set (add) a flag in the flag field of DESCR.

Data Input to SETF:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc F cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SETF:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc F+FLAG cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. FLAG is added to the flags already present in F. The other flags are left unchanged.

2. If F already contains FLAG, no data is altered.

3. See also SETFI.

102. SETFI (set flag indirect)

ii
SETFI DESCR,FLAGiicc cc

SETFI is used to set (add) a flag in the flag field of a descriptor specified indirectly.

Data Input to SETFI:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc F cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SETFI:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc F+FLAG cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 67 -

-- --

Programming Notes:

1. FLAG is added to the flags already present in F. The other flags are left unchanged.

2. If F already contains FLAG, no data is altered.

3. See also SETF and RSETFI.

103. SETLC (set length of specifier to constant)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SETLC SPEC,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

SETLC is used to set the length of a specifier to a constant.

Data Altered by SETLC:iii
SPEC cc cc cc cc Niiicc cc

Programming Notes:

1. N is never negative.

2. N is often 0.

3. See also SETAC.

104. SETSIZ (set size)

ii
SETSIZ DESCR1,DESCR2iicc cc

SETSIZ is used to set the size into the value field of a title descriptor.

Data Input to SETSIZ:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SETSIZ:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 68 -

-- --

Programming Notes:

1. I is always positive and small enough to fit into the value field.

2. See also GETSIZ

105. SETSP (set specifier)

iii
SETSP SPEC1,SPEC2iiicc cc

SETSP is used to set one specifier equal to another.

Data Input to SETSP:iii
SPEC2 A cc F cc V cc O cc Liiicc cc

Data Altered by SETSP:iii
SPEC1 A cc F cc V cc O cc Liiicc cc

106. SETVA (set value field from address)

ii
SETVA DESCR1,DESCR2iicc cc

SETVA is used to set the value field of one descriptor from the address field of another.

Data Input to SETVA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SETVA:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 cc cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. I is always positive and small enough to fit into the value field.

2. See also SETVA and SETVC.

- 69 -

-- --

107. SETVC (set value to constant)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SETVC DESCR,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

SETVC is used to set the value field of a descriptor to a constant.

Data Altered by SETVC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc cc Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. N is always positive and small enough to fit into the value field.

2. See also SETVA and SETAC.

108. SHORTN (shorten specifier)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SHORTN SPEC,Niiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

SHORTN is used to shorten the specification of a string.

Data Input to SHORTN:iii
SPEC cc cc cc cc Liiicc cc

Data Altered by SHORTN:iii
SPEC cc cc cc cc L-Niiicc cc

Programming Notes:

1. L-N is never negative.

109. SPCINT (convert specifier to integer)

ii
SPCINT DESCR,SPEC,FLOC,SLOCiicc cc

SPCINT is used to convert a specified string to a integer. I(S) is a signed integer resulting from
the conversion of the string C1...CL. If C1...CL does not represent an integer or if the integer it
represents is too large to fit the address field, transfer is to FLOC. Otherwise transfer is to SLOC.

- 70 -

-- --

Data Input to SPCINT:iii
SPEC A cc cc cc O cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+O C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SPCINT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I(S) cc 0 cc Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. I is a symbol defined in the source program and is the code for the integer data type.

2. C1...CL may begin with a sign (plus or minus) and may contain indefinite number of leading zeros.
Consequently the value of L itself does not determine whether the integer represented is too large to fit
into an address field.

3. A sign alone is not a valid integer.

4. If L = 0, I(S) should be the integer 0.

5. See also INTSPC and SPREAL.

110. SPEC (assemble specifier)

iii
LOC SPEC A,F,V,O,Liiicc cc

SPEC is used to assemble a specifier.

Data Assembled by SPEC:iii
LOC A cc F cc V cc O cc Liiicc cc

111. SPOP (pop specifier from stack)

ii
SPOP (SPEC1,...,SPECN)iicc cc

SPOP is used to pop a list of specifiers from the system stack.

- 71 -

-- --

Data Input to SPOP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
A+D-S A1 cc F1 cc V1 cc O1 cc L1iiicc cc

.

.

.iii
A+D-(N*S) AN cc FN cc VN cc ON cc LNiiicc cc

Data Altered by SPOP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A-(N*S) cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC1 A1 cc F1 cc V1 cc O1 cc L1iiicc cc

.

.

.iii
SPECN AN cc FN cc VN cc ON cc LNiiicc cc

Programming Notes:

1. If A-(N*S) < STACK, stack underflow occurs. This condition indicates a programming error in
the implementation of the macro language. An appropriate error termination for this error may be obtained
by transferring to the program location INTR10 if the condition is detected.

2. See also POP, SPUSH, and PUSH.

112. SPREAL (convert specified string to real number)

ii
SPREAL DESCR,SPEC,FLOC,SLOCiicc cc

SPREAL is used to convert a specified string into a real number. R(S) is a signed real number
resulting from the conversion of the string S = C1. If C1...CL does not represent a real number, or if
the real number it represents is out of the range available for real numbers, transfer is to FLOC. Otherwise
transfer is to SLOC.

Data Input to SPREAL:iii
SPEC A cc cc cc O cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+O C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 72 -

-- --

Data Altered by SPREAL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR R(S) cc 0 cc Riiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. R is a symbol defined in the source program and is the code for the real data type.

2. C1,...,CL may begin with a sign (plus or minus) and may contain an indefinite number of leading
zeros. C1,...,CL will contain a decimal point if it represents a real number, and have at least one digit
before the decimal point.

3. If L = 0, R(S) should be the real number 0.0.

4. See also SPCINT and INTRL.

113. SPUSH (push specifiers onto stack)

ii
SPUSH (SPEC1,...,SPECN)iicc cc

SPUSH is used to push a list of specifiers onto the system stack.

Data Input to SPUSH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC1 A1 cc F1 cc V1 cc O1 cc L1iiicc cc

.

.

.iii
SPECN AN cc FN cc VN cc ON cc LNiiicc cc

Data Altered by SPUSH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
CSTACK A+(S*N) cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
A+D A1 cc F1 cc V1 cc O1 cc L1iiicc cc

.

.

.iii
A+D+S*N-S AN cc FN cc VN cc ON cc LNiiicc cc

- 73 -

-- --

Programming Notes:

1. If A+(S*N) > STACK+STSIZE, stack overflow occurs. Transfer should be made to the program
location OVER, which will result in an appropriate error termination.

2. See also PUSH, POP, and SPOP.

114. STPRNT (string print)

ii
STPRNT DESCR1,DESCR2,SPECiicc cc

STPRNT is used to print a string. The string C11...C1L is printed on the file associated with unit
reference number I. C21...C2M is the output format. J is an integer specifying a condition signaled
by the output routine.

Data Input to STPRNT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+D I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+2D A2 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2 cc cc Miiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+4D C21 cc ... cc C2Miiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC A1 cc cc cc O1 cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+O1 C11 cc ... cc C1Liiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by STPRNT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 J cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. The format C21...C2M is a FORTRAN IV format in ‘‘‘undigested’’’ form. See FORMAT.

2. Both C11...C1L and C21...C2M begin at descriptor boundaries.

3. The condition J set in the address field of DESCR1 is not used.

4. See also OUTPUT and STREAD.

- 74 -

-- --

115. STREAD (string read)

ii
STREAD SPEC,DESCR,EOF,ERROR,SLOCiicc cc

STREAD is used to read a string. The string C1...CL is read from the file associated with unit
reference number I. If an end-of-file is encountered, transfer is to EOF. If a reading error occurs,
transfer is to ERROR. Otherwise transfer is to SLOC.

Data Input to STREAD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC A cc cc cc O cc Liiicc cc

Data Altered by STREAD:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+O C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. Note that the length of the string to be read is specified by the data provided to STREAD. If the record
read is not of length L, FORTRAN IV conventions regarding truncation or reading of additional records
should be followed.

2. See also STPRNT.

116. STREAM (stream for token)

ii
STREAM SPEC1,SPEC2,TABLE,ERROR,RUNOUT,SLOCiicc cc

STREAM is used to locate a syntactic token at the beginning of the string specified by SPEC2. If
there is an I (1 ≤ I ≤ L) such that TI is ERROR, STOP, or STOPSH, and J is the least such I,
then if TJ is ERROR, transfer is to ERRROR, while if if TJ is STOPSH, transfer is to SLOC.
Otherwise transfer is to RUNOUT.

In the figures that follow, J is the least value of I for which TI is STOP or STOPSH. P is the
last value of P (1 ≤ I ≤ J) that is nonzero (i.e. for which a PUT is specified in the syntax table
description for the tables given). If no PUT is specified, P is zero.

- 75 -

-- --

Data Input to STREAM:iii
SPEC2 A cc F cc V cc O cc Liiicc cc

iii
A+O C1 cc ... cc CJ cc CJ+1 cc ... cc CLiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
TABLE+E*C1 A2 cc T1 cc P1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A2+E*C2 A3 cc T2 cc P2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
AL+E*CL cc TL cc PLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by STREAM if Termination is STOP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
STYPE P cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC1 A cc F cc V cc O cc Jiiicc cc

iii
SPEC2 A cc F cc V cc O+J cc L-Jiiicc cc

Data Altered by STREAM if Termination is STOPSH:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
STYPE P cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC1 A cc F cc V cc O cc J-1iiicc cc

iii
SPEC2 A cc F cc V cc O+J-1 cc L-J+1iiicc cc

Data Altered by STREAM if Termination is ERROR:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
STYPE 0 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC1 A cc F cc V cc O cc Liiicc cc

Data Altered by STREAM if Termination is RUNOUT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
STYPE P cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iii
SPEC1 A cc F cc V cc O cc Liiicc cc

iii
SPEC2 A cc F cc V cc O cc 0iiicc cc

- 76 -

-- --

Programming Notes:

1. Termination with STOP or STOPSH may occur on the last character, CL.

2. If L = 0 (i.e. if SPEC2 specifies the null string), RUNOUT occurs. In this case the address field of
STYPE should be set to 0.

3. See Section 4.2.

117. STRING (assemble specified string)

iii
LOC STRING ’C1...CL’iiicc cc

STRING is used to assemble a string and a specifier to it.

Data Assembled by STRING:iii
LOC A cc 0 cc 0 cc 0 cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. Note that LOC is the location of the specifier, not the string. The string may immediately follow the
specifier, or it may be assembled at a remote location.

118. SUBSP (substring specification)

ii
SUBSP SPEC1,SPEC2,SPEC3,FLOC,SLOCiicc cc

SUBSP is used to specify an initial substring of a specified string. If L3 ≥ L2, transfer is to
SLOC. Otherwise transfer is to FLOC and SPEC1 is not altered.

Data Input to SUBSP:iii
SPEC2 cc cc cc cc L2iiicc cc

iii
SPEC3 A3 cc F3 cc V3 cc O3 cc L3iiicc cc

Data Altered by SUBSP if L3 ≥ L2:iii
SPEC1 A3 cc F3 cc V3 cc O3 cc L2iiicc cc

- 77 -

-- --

119. SUBTRT (subtract addresses)

ii
SUBTRT DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

SUBTRT is used to subtract one address field from another. A2 and A3 are considered as signed
integers. If A2-A3 is out of the range available for integers, transfer is to FLOC. Otherwise transfer is to
SLOC.

Data Input to SUBTRT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A2 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A3 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SUBTRT:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A2-A3 cc F2 cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. A2 and A3 may be relocatable addresses.

2. The test for success and failure is used in only one call of this macro. Hence the code to make the
check is not needed in most cases.

3. DESCR1 and DESCR2 are often the same.

4. See also SUM.

120. SUM (sum addresses)

ii
SUM DESCR1,DESCR2,DESCR3,FLOC,SLOCiicc cc

SUM is used to add two address fields. A and I are considered as signed integers. If A+I is out
of the range available for integers, transfer is to FLOC. Otherwise transfer is to SLOC.

Data Input to SUM:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by SUM:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A+I cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 78 -

-- --

Programming Notes:

1. A may be a relocatable address.

2. The test for success and failure is used in only one call of this macro. Hence the code to make the
check is not needed in most cases.

3. DESCR1 and DESCR2 are often the same.

4. See also SUBTRT.

121. TESTF (test flag)

ii
TESTF DESCR,FLAG,FLOC,SLOCiicc cc

TESTF is used to test a flag field for the presence of a flag. If F contains FLAG, transfer is to
SLOC. Otherwise transfer is to FLOC.

Data Input to TESTF:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc F cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also TESTFI.

122. TESTFI (test flag indirect)

ii
TESTFI DESCR,FLAG,FLOC,SLOCiicc cc

TESTFI is used to test an indirectly specified flag field for the presence of a flag. If F contains
FLAG, transfer is to SLOC. Otherwise transfer is to FLOC.

Data Input to TESTFI:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc F cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also TESTF.

- 79 -

-- --

123. TITLE (title assembly listing)

iii
TITLE ’C1...CN’iiicc cc

TITLE is used at assembly time to title the assembly listing of the SNOBOL4 system. TITLE
should cause a page eject and title subsequent pages with C1...CN.

Programming Notes:

1. TITLE need not be implemented as such. It may simply perform no operation.

124. TOP (get to top of block)

ii
TOP DESCR1,DESCR2,DESCR3iicc cc

TOP is used to get to the top of a block of descriptors. Descriptors at A, A-D,...,A-(N*D) are
examined successively for the first descriptor whose flag field contains the flag TTL. Data is altered as
indicated, where F3N is the first field to contain TTL.

Data Input to TOP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR3 A cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A-(N*D) cc F3N cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A-D cc F31 cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A cc F30 cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by TOP:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A-(N*D) cc F cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 N*D cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. N may be 0. That is, F30 may contain TTL.

- 80 -

-- --

125. TRIMSP (trim blanks from specifier)

iii
TRIMSP SPEC1,SPEC2iiicc cc

TRIMSP is used to obtain a specifier to the part of a specified string up to a trailing string of blanks.

Data Input to TRIMSP:iii
SPEC2 A cc F cc V cc O cc Liiicc cc

iii
A+O C1 cc ... cc CJ cc CJ+1 cc ... cc CLiiicc cc

Data Altered by TRIMSP:iii
SPEC1 A cc F cc V cc O cc Jiiicc cc

Programming Notes:

1. If CL is not blank, J = L.

2. If L = 0, TRIMSP is equivalent to SETSP.

126. UNLOAD (unload external function)

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
UNLOAD SPECiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

UNLOAD is used to unload an external function. C1...CL represents the name of the function that
is to be unloaded.

Data Input to UNLOAD:iii
SPEC A cc cc cc O cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+O C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. UNLOAD is a system-dependent operation.

2. UNLOAD need not be implemented as such. If it is not, it should perform no operation, since the
SNOBOL function UNLOAD, which uses the macro UNLOAD, has a valid use in undefining existing, but
non-external, functions.

3. UNLOAD should do nothing if the function C1...CL is not a LOADed function.

4. See also LOAD and LINK.

- 81 -

-- --

127. VARID (compute variable identification numbers)

ii
VARID DESCR,SPECiicc cc

VARID is used to compute two variable identification numbers from a specified string. K and M
are computed by

K = F1(C1...CL)
M = F2(C1...CL)

where F1 and F2 are two (different) functions that compute pseudo-random numbers from the characters
C1...CL. The numbers computed should be in the ranges

0 ≤ K ≤ (OBSIZ-1)*D
0 ≤ M ≤ SIZLIM

where OBSIZ is a program symbol defining the number of chains in variable storage and SIZLIM is a
program symbol defining the largest integer that can be stored in the value field of a descriptor.

Data Input to VARID:iii
SPEC A cc cc cc O cc Liiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+O C1 cc ... cc CLiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by VARID:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR K cc cc Miiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. K is used to select one of a number of chains in variable storage. The K are address offsets that must
fall on descriptor boundaries.

2. M is used to order variables (string structures) within a chain. See ORDVST.

3. The values of K and M should have as little correlation as possible with the characters C1...CL,
since the ‘‘‘randomness’’’ of the results determines the efficiency of variable access.

4. One simple algorithm consists of multiplying the first part of C1...CL by the last part, and
separating the central portion of the result into K and M.

5. L is always greater than zero.

128. VCMPIC (value field compare indirect with offset constant)

ii
VCMPIC DESCR1,N,DESCR2,GTLOC,EQLOC,LTLOCiicc cc

- 82 -

-- --

VCMPIC is used to compare a value field, indirectly specified with an offset constant, with another
value field. V1 and V2 are considered as unsigned integers. If V1 > V2, transfer is to GTLOC. If
V1 = V2, transfer is to EQLOC. If V1 < V2, transfer is to LTLOC.

Data Input to VCMPIC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A1 cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 cc cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A1+N cc cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

129. VEQL (value fields equal test)

ii
VEQL DESCR1,DESCR2,NELOC,EQLOCiicc cc

VEQL is used to compare the value fields of two descriptors. V1 and V2 are considered as
unsigned integers. If V1 = V2, transfer is to EQLOC. Otherwise transfer is to NELOC.

Data Input to VEQL:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 cc cc V1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 cc cc V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. See also AEQL and VEQLC.

130. VEQLC (value field equal to constant test)

iii
VEQLC DESCR,N,NELOC,EQLOCiiicc cc

VEQLC is used to compare the value field of a descriptor to a constant. V is considered as an
unsigned integer. If V = N, transfer is to EQLOC. Otherwise transfer is to NELOC.

Data Input to VEQLC:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR cc cc Viiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

- 83 -

-- --

Programming Notes:

1. N is never negative.

2. See also AEQLC and VEQL.

131. ZERBLK (zero block)

ii
ZERBLK DESCR1,DESCR2iicc cc

ZERBLK is used to zero a block of I+1 descriptors.

Data Input to ZERBLK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR1 A cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
DESCR2 D*I cc cciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Data Altered by ZERBLK:iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A 0 cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

.

.

.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
A+(D*I) 0 cc 0 cc 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc cc

Programming Notes:

1. I is always positive.

7. Implementation Notes

7.1. Optional Macros

There are several macros that are used in noncritical parts of the SNOBOL4 language. Some macros
are used only to implement certain built-in functions. Others are required only for minor executive
operations. The following list includes macros for which implementation is optional. For these macros,
simple alternative implementations are suggested and the language features disabled are indicated. In
selecting macros for inclusion in this list, a judgement was made concerning what features could be

- 84 -

-- --

disabled and still leave SNOBOL4 a useful language.

Macro Alternative Implementation Features Disabled

ADREAL1— Branch to INTR10 Real arithmetic

BKSPCE Branch to UNDF The function BACKSPACE

CLERTB2— Branch to UNDF The functions ANY, NOTANY, SPAN, and BREAK

DATE Set length of SPEC to 0 The function DATE

DVREAL1— Set address of DESCR2 to 0 Real arithmetic and post-run statictics

ENFILE Branch to UNDF The function ENDFILE

EXPINT Branch to UNDF Exponentiation of integers

EXREAL1— Branch to INTR10 Real arithmetic

GETBAL Branch to UNDF The built-in pattern BAL

INTRL1— Perform no operation Real arithmetic

LEXCMP3— If GTLOC ≠ LTLOC, branch to UNDF The function LGT

LINK4— Branch to INTR10 External functions

LOAD4— Branch to UNDF External functions

MNREAL1— Branch to INTR10 Real arithmetic

MPREAL1— Branch to INTR10 Real arithmetic

MSTIME Set address of DESCR to 0 The function TIME, trace timing, post-run statistics

ORDVST Perform no operation Alphabetization of post-run dump

PLUGTB2— Branch to INTR10 The functions ANY, NOTANY, SPAN,and BREAK

RCOMP1— Branch to INTR10 Real arithmetic

REALST1— Branch to UNDF Real arithmetic

REWIND Branch to INTR10 The function REWIND

RLINT1— Branch to INTR10 Real arithmetic

RPLACE Branch to INTR10 The function REPLACE

SBREAL1— Branch to INTR10 Real arithmetic

SPREAL1— Take the FAILURE exit Real arithmetic

TRIMSP Branch to INTR10 The function TRIM
hhhhhhhhhhhhhhhhhh
1—All operations relating to real arithmetic should be implemented or not implemented as a group.

2—CLERTB and PLUGTB should be implemented or not implemented as a pair.

3—LEXCMPmust be properly implemented if LTLOC is the same as GTLOC.

4—LINK, LOAD, and UNLOAD should be implemented or not implemented as a group.

- 85 -

-- --

UNLOAD4— Perform no operation External functions

7.2. Machine-Dependent Data

In addition to the data given in the COPY files (q.v.) there are several format strings that generally
have to be changed to suit a particular machine. The strings defined by FORMAT (which occur at the end
of the source file) are in this category. The two strings CRDFSP and OUTPSP defined by STRING are
also machine dependent.

7.3. Error Exits for Debugging

During the debugging phases, it is good programming practice to test for certain conditions that
should not occur, but typically do if there is an error in the implementation. Stack underflow is typical.
Transfer to the label INTR10 upon recognition of such an error causes the SNOBOL4 run to terminate
with the message ERROR IN SNOBOL4 SYSTEM. Following this message, the statement number in
which the error occurred is printed, as well as requested dumps and termination statistics that may be
helpful in debugging.

7.4. Subroutines Versus In-Line Code

The choice between implementing macro operations by subroutine calls or in-line code depends on a
number of factors, including the machine and its environment. The size of the SNOBOL4 system usually
encourages subroutine implementations of the more complicated operations. The following information,
obtained by program analysis and dynamic performance measurements, may be helpful in making these
decisions. Column 1 lists the macro operations in alphabetical order, including non-executable macros.
Column 2 gives the number of times each each macro operation occurs in the SNOBOL4 program.
Column 3 gives the percentage of time spent in each (executable) macro during execution of a typical set
of programs on the IBM System/360 implementation. Time spent in I/O and operating system subroutines
is not included. A * marks those macros that are implementated by subroutines in the IBM System/360
implementation (including macros that call I/O and system subroutines).

ACOMP 65 2.952
ACOMPC 61 1.450
ADDLG 8 0.000
ADDSIB 6 0.000
ADDSON 12 0.017
ADJUST 2 0.000
ADREAL 1 0.000
AEQL 18 0.397
AEQLC 177 3.574
AEQLIC 10 0.086
APDSP* 93 0.897
ARRAY 5 −−−−−
BKSIZE 5 1.329
BKSPCE* 1 0.000
BRANCH 354 0.638
BRANIC 5 2.054
BUFFER 5 −−−−−
CHKVAL 4 0.604
CLERTB 4 0.000
COPY 3 −−−−−
CPYPAT* 14 3.021
DATE* 1 0.000
DECRA 66 1.588
DEQL 73 1.346
DESCR 920 −−−−−
DIVIDE 4 0.000

− 86 −

−− −−

DVREAL 2 0.000
END 1 −−−−−
ENDEX* 1 0.000
ENFILE* 1 0.000
EQU 69 −−−−−
EXPINT 1 0.000
EXREAL* 1 0.000
FORMAT 26 −−−−−
FSHRTN 12 0.000
GETAC 10 0.638
GETBAL* 1 0.172
GETD 53 7.408
GETDC 113 5.025
GETLG 59 0.759
GETLTH 2 0.172
GETSIZ 28 0.397
GETSPC 10 0.017
INCRA 140 5.577
INCRV 1 0.000
INIT* 1 0.138
INSERT 1 0.000
INTRL 7 0.000
INTSPC* 25 0.552
ISTACK 2 0.000
LCOMP 5 0.000
LEQLC 18 0.103
LEXCMP* 12 2.624
LHERE 14 −−−−−
LINK* 1 0.000
LINKOR 1 0.000
LOAD* 1 0.000
LOCAPT 21 1.467
LOCAPV 32 5.197
LOCSP 80 1.605
LVALUE* 6 0.207
MAKNOD 13 0.172
MNREAL 1 0.000
MNSINT 1 0.034
MOVA 7 0.397
MOVBLK* 13 0.103
MOVD 155 1.985
MOVDIC 7 0.017
MOVV 16 0.811
MPREAL 1 0.000
MSTIME* 8 0.000
MULT 6 0.120
MULTC 18 0.207
ORDVST* 1 0.000
OUTPUT* 28 0.034
PLUGTB 4 0.000
POP 118 4.282
PROC 173 2.365
PSTACK 5 0.034
PUSH 124 3.091

− 87 −

−− −−

PUTAC 11 0.448
PUTD 33 0.069
PUTDC 126 3.056
PUTLG 9 0.189
PUTSPC 1 0.138
PUTVC 1 0.034
RCALL 342 8.927
RCOMP 6 0.000
REALST* 10 0.000
REMSP 7 0.448
RESETF 3 0.000
REWIND* 1 0.000
RLINT 2 0.000
RPLACE* 1 0.000
RRTURN 21 6.182
RSETFI 2 0.000
SBREAL 1 0.000
SELBRA 18 0.017
SETAC 169 0.673
SETAV 33 1.830
SETF 1 0.000
SETFI 5 0.086
SETLC 28 0.034
SETSIZ 7 0.155
SETSP 23 0.155
SETVA 14 0.051
SETVC 28 0.207
SHORTN 4 0.000
SPCINT* 24 0.069
SPEC 30 −−−−−
SPOP 4 0.000
SPREAL* 13 0.000
SPUSH 4 0.000
STPRNT* 15 0.051
STREAD* 4 0.051
STREAM* 35 0.656
STRING 152 −−−−−
SUBSP 3 0.362
SUBTRT 22 0.189
SUM 67 1.709
TESTF 24 1.899
TESTFI 9 0.707
TITLE 24 −−−−−
TOP 4 0.241
TRIMSP 2 0.069
UNLOAD* 1 0.000
VARID 1 0.897
VCMPIC 1 0.535
VEQL 3 2.158
VEQLC 106 0.759
ZERBLK 3 0.128

88

7.5. Classification of Macro Operations

In the following sections, the macro operations are classified according to the way they are
used.

Assembly Control Macros:

COPY END EQU LHERE TITLE

Macros that Assemble Data:

ARRAY BUFFER DESCR FORMAT SPEC
STRING

Branch Macros:

BRANCH BRANIC SELBRA

Comparison Macros:

ACOMP ACOMPC AEQL AEQLC AEQLIC
CHKVAL DEQL LCOMP LEQLC LEXCMP
RCOMP TESTF TESTFI VCMPIC VEQL
VEQLC

Macros that Relate to Recursive Procedures and Stack Management:

ISTACK POP PROC PSTACK PUSH
RCALL RRTURN SPOP SPUSH

Macros that Move and Set Descriptors:

GETD GETDC MOVBLK MOVD MOVDIC
POP PUSH PUTD PUTDC ZERBLK

Macros that Modify Address Fields of Descriptors:

ADJUST BKSIZE DECRA GETAC GETLG
GETLTH GETSIZ INCRA MOVA PUTAC
SETAC SETAV

Macros that Modify Value Fields of Descriptors:

INCRV MOVV PUTVC SETSIZ SETVA
SETVC

Macros that Modify Flag Fields of Descriptors:

RESETF RSETFI SETF SETFI

Macros that Perform Integer Arithmetic on Address Fields:

DECRA DIVIDE EXPINT INCRA MNSINT
MULT MULTC SUBTRT SUM

89

Macros that Deal with Real Numbers:

ADREAL DVREAL EXREAL INTRL MNREAL
MPREAL RCOMP REALST RLINT SBREAL
SPREAL

Macros that Move Specifiers:

GETSPC PUTSPC SETSP SPOP SPUSH

Macros that Operate on Specifiers:

ADDLG APDSP FSHRTN GETBAL INTSPC
LOCSP PUTLG REMSP SETLC SHORTN
STREAM SUBSP TRIMSP

Macros that Operate on Syntax Tables:

CLERTB PLUGTB

Macros that Construct Pattern Nodes:

CPYPAT MAKNOD

Macros that Operate on Tree Nodes:

ADDSIB ADDSON INSERT

Input and Output Macros:

BKSPCE ENFILE FORMAT OUTPUT REWIND
STPRNT STREAD

Macros that Depend on Operating System Facilities:

DATE ENDEX INIT LINK LOAD
MSTIME UNLOAD

Miscellaneous Macros:

LINKOR LOCAPT LOCAPV LVALUE ORDVST
RPLACE SPCINT TOP VARID

7.6. Format of the SNOBOL4 Source File

One problem in implementing SNOBOL4 for a particular machine involves putting the
macro language program into a form suitable for the assembler for that machine. This typically
involves making a number of format changes and correcting a few special cases by hand. It is
desirable to perform as many changes as possible by some systematic, mechanical means (preferably
with a program) so that new versions of the macro language program can be converted into the
required form easily, thus facilitating the incorporation of updates in the SNOBOL4 language. A
systematic, mechanical technique also minimizes random errors inevitably introduced by human
interference. Such random errors are particularly dangerous in such an implementation, since most
of the logic of the system is at a level divorced from the implementation of the macro language. This
section describes the format of the macro language program in order to make the necessary format

90

changes easier to determine.

The SNOBOL4 assembly source file consists of 6611 80 character card images. All card
images are blank in column 72 and contain sequence numbering in columns 73 through 80. Updates
to the source file are given in terms of these sequence numbers, so care should be taken not to
destroy this information. There are two kinds of card images: program text and comments.
Comments have an asterisk (*) in column 1 and descriptive text of various types in columns 2
through 71. All other card images (about 4850 out of the total of 6611) are program text. Program
text has a field format as follows:

1. Columns 1 through 6: label field. A program label, if present, begins in column 1. All labels
begin with a letter, followed by letters or digits. Labels are from two through six characters in
length. If a program card has no label, the label field is blank.

2. Column 7: blank.

3. Columns 8 through 13: operation field. Program text has operations that begin in column 8.
Operations consist of from three to six letters.

4. Columns 14 and 15: blank.

5. Columns 16 through 71: variable field. A list of operands appears in the variable field starting
in column 16. The list consists of items separated by commas. The last item in the list is followed
by a blank. If there are no operands, there is a comma in column 16 and a blank in column 17. Items
in the operand list may take several forms:

a. Identifiers, which satisfy the requirements of program labels.

b. Integer constants.

c. Arithmetic expressions containing identifiers and constants.

d. Lists of items enclosed in parentheses. Lists are not nested, i.e. lists do not occur as items
within lists.

e. Character literals, consisting of characters enclosed in single quotation marks. Quotation
marks do not occur within literals, but commas, parentheses, and blanks may. This fact must
be taken into account in analyzing the variable field.

f. Nulls, or items of zero length. Nulls represent explicitly omitted arguments to macro
operations.

Comments may occur following the blank that terminates the variable field. Such comments
begin in column 36 or subsequently.

The following portion of program is typical.
−−− 00000821
* 00000822
* Block Marking 00000823
* 00000824
GCM PROC , Procedure to mark blocks 00000825

POP BK1CL Restore block to mark from 00000826
PUSH ZEROCL Save end marker 00000827

GCMA1 GETSIZ BKDX,BK1CL Get size of block 00000828
GCMA2 GETD DESCL,BK1CL,BKDX Get descriptor 00000829

TESTF DESCL,PTR,GCMA3 Is it a pointer? 00000830
AEQLC DESCL,0,,GCMA3 Is address zero? 00000831
TOP TOPCL,OFSET,DESCL Get to title of block pointed to 00000832
TESTFI TOPCL,MARK,GCMA4 Is block marked? 00000833

GCMA3 DECRA BKDX,DESCR Decrement offset 00000834
AEQLC BKDX,0,GCMA2 Check for end of block 00000835
POP BK1CL Restore block pushed 00000836
AEQLC BK1CL,0,,RTN1 Check for end 00000837
SETAV BKDX,BK1CL Get size remaining 00000838

− 91 −

−− −−

BRANCH GCMA2 Continue processing 00000839
*_ 00000840
GCMA4 DECRA BKDX,DESCR Decrement offset 00000841

AEQLC BKDX,0,,GCMA9 Check for end 00000842
SETVA BK1CL,BKDX Insert offset 00000843
PUSH BK1CL Save current block 00000844

GCMA9 MOVD BK1CL,TOPCL Set poiner to new block 00000845
SETFI BK1CL,MARK Mark block 00000846
TESTFI BK1CL,STTL,GCMA1 Is it a string? 00000847
MOVD BKDX,TWOCL Set size of string to 2 00000848
BRANCH GCMA2 Join processing 00000849

*_ 00000850

Acknowledgement

The SIL version of SNOBOL4 was implemented jointly by the author, Jim Poage, and Ivan
Polonsky. Other individuals, too numerous to mention here, have provided many helpful criticisms and
correctionsofthisdocument.

−92−

−− −−

AppendixA—SyntaxTableDescriptions

BEGIN BIOPTB
FOR(PLUS) PUT(ADDFN) GOTO(TBLKTB)
FOR(MINUS) PUT(SUBFN) GOTO(TBLKTB)
FOR(DOT) PUT(NAMFN) GOTO(TBLKTB)
FOR(DOLLAR) PUT(DOLFN) GOTO(TBLKTB)
FOR(STAR) PUT(MPYFN) GOTO(STARTB)
FOR(SLASH) PUT(DIVFN) GOTO(TBLKTB)
FOR(AT) PUT(BIATFN) GOTO(TBLKTB)
FOR(POUND) PUT(BIPDFN) GOTO(TBLKTB)
FOR(PERCENT) PUT(BIPRFN) GOTO(TBLKTB)
FOR(RAISE) PUT(EXPFN) GOTO(TBLKTB)
FOR(ORSYM) PUT(ORFN) GOTO(TBLKTB)
FOR(KEYSYM) PUT(BIAMFN) GOTO(TBLKTB)
FOR(NOTSYM) PUT(BINGFN) GOTO(TBLKTB)
FOR(QUESYM) PUT(BIQSFN) GOTO(TBLKTB)
ELSE ERROR
END BIOPTB

BEGIN CARDTB
FOR(CMT) PUT(CMTTYP) STOPSH
FOR(CTL) PUT(CTLTYP) STOPSH
FOR(CNT) PUT(CNTTYP) STOPSH
ELSE PUT(NEWTYP) STOPSH
END CARDTB

BEGIN DQLITB
FOR(DQUOTE) STOP
ELSE CONTIN
END DQLITB

BEGIN ELEMTB
FOR(NUMBER) PUT(ILITYP) GOTO(INTGTB)
FOR(LETTER) PUT(VARTYP) GOTO(VARTB)
FOR(SQUOTE) PUT(QLITYP) GOTO(SQLITB)
FOR(DQUOTE) PUT(QLITYP) GOTO(DQLITB)
FOR(LEFTPAREN) PUT(NSTTYP) STOP
ELSE ERROR
END ELEMTB

BEGIN EOSTB
FOR(EOS) STOP
ELSE CONTIN
END EOSTB

BEGIN FLITB
FOR(NUMBER) CONTIN
FOR(TERMINATOR) STOPSH
ELSE ERROR
END FLITB

− 93 −

−− −−

BEGIN FRWDTB
FOR(BLANK) CONTIN
FOR(EQUAL) PUT(EQTYP) STOP
FOR(RIGHTPAREN) PUT(RPTYP) STOP
FOR(RIGHTBR) PUT(RBTYP) STOP
FOR(COMMA) PUT(CMATYP) STOP
FOR(COLON) PUT(CLNTYP) STOP
FOR(EOS) PUT(EOSTYP) STOP
ELSE PUT(NBTYP) STOPSH
END FRWDTB

BEGIN GOTFTB
FOR(LEFTPAREN) PUT(FGOTYP) STOP
FOR(LEFTBR) PUT(FTOTYP) STOP
ELSE ERROR
END GOTFTB

BEGIN GOTOTB
FOR(SGOSYM) GOTO(GOTSTB)
FOR(FGOSYM) GOTO(GOTFTB)
FOR(LEFTPAREN) PUT(UGOTYP) STOP
FOR(LEFTBR) PUT(UTOTYP) STOP
ELSE ERROR
END GOTOTB

BEGIN GOTSTB
FOR(LEFTPAREN) PUT(SGOTYP) STOP
FOR(LEFTBR) PUT(STOTYP) STOP
ELSE ERROR
END GOTSTB

BEGIN IBLKTB
FOR(BLANK) GOTO(FRWDTB)
FOR(EOS) PUT(EOSTYP) STOP
ELSE ERROR
END IBLKTB

BEGIN INTGTB
FOR(NUMBER) CONTIN
FOR(TERMINATOR) PUT(ILITYP) STOPSH
FOR(DOT) PUT(FLITYP) GOTO(FLITB)
ELSE ERROR
END INTGTB

BEGIN LBLTB
FOR(ALPHANUMERIC) GOTO(LBLXTB)
FOR(BLANK,EOS) STOPSH
ELSE ERROR
END LBLTB

− 94 −

−− −−

BEGIN LBLXTB
FOR(BLANK,EOS) STOPSH
ELSE CONTIN
END LBLXTB

BEGIN NBLKTB
FOR(TERMINATOR) ERROR
ELSE STOPSH
END NBLKTB

BEGIN NUMBTB
FOR(NUMBER) GOTO(NUMCTB)
FOR(PLUS,MINUS) GOTO(NUMCTB)
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DIMTYP) STOPSH
ELSE ERROR
END NUMBTB

BEGIN NUMCTB
FOR(NUMBER) CONTIN
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(COLON) PUT(DIMTYP) STOPSH
ELSE ERROR
END NUMCTB

BEGIN SNABTB
FOR(FGOSYM) STOP
FOR(SGOSYM) STOPSH
ELSE ERROR
END SNABTB

BEGIN SQLITB
FOR(SQUOTE) STOP
ELSE CONTIN
END SQLITB

BEGIN STARTB
FOR(BLANK) STOP
FOR(STAR) PUT(EXPFN) GOTO(TBLKTB)
ELSE ERROR
END STARTB

BEGIN TBLKTB
FOR(BLANK) STOP
ELSE ERROR
END TBLKTB

− 95 −

−− −−

BEGIN UNOPTB
FOR(PLUS) PUT(PLSFN) GOTO(NBLKTB)
FOR(MINUS) PUT(MNSFN) GOTO(NBLKTB)
FOR(DOT) PUT(DOTFN) GOTO(NBLKTB)
FOR(DOLLAR) PUT(INDFN) GOTO(NBLKTB)
FOR(STAR) PUT(STRFN) GOTO(NBLKTB)
FOR(SLASH) PUT(SLHFN) GOTO(NBLKTB)
FOR(PERCENT) PUT(PRFN) GOTO(NBLKTB)
FOR(AT) PUT(ATFN) GOTO(NBLKTB)
FOR(POUND) PUT(PDFN) GOTO(NBLKTB)
FOR(KEYSYM) PUT(KEYFN) GOTO(NBLKTB)
FOR(NOTSYM) PUT(NEGFN) GOTO(NBLKTB)
FOR(ORSYM) PUT(BARFN) GOTO(NBLKTB)
FOR(QUESYM) PUT(QUESFN) GOTO(NBLKTB)
FOR(RAISE) PUT(AROWFN) GOTO(NBLKTB)
ELSE ERROR
END UNOPTB

BEGIN VARATB
FOR(LETTER) GOTO(VARBTB)
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR
END VARATB

BEGIN VARBTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(LEFTPAREN) PUT(LPTYP) STOPSH
FOR(COMMA) PUT(CMATYP) STOPSH
FOR(RIGHTPAREN) PUT(RPTYP) STOPSH
ELSE ERROR
END VARBTB

BEGIN VARTB
FOR(ALPHANUMERIC,BREAK) CONTIN
FOR(TERMINATOR) PUT(VARTYP) STOPSH
FOR(LEFTPAREN) PUT(FNCTYP) STOP
FOR(LEFTBR) PUT(ARYTYP) STOP
ELSE ERROR
END VARTB

−96−

−− −−

AppendixB—AvailableImplementationMaterial

There is a substantial amount of material available to the would−be installer of the SIL
implementation of SNOBOL4. Much of the basic documentation is given in a book that is available
throughbooksuppliers. Therestofthematerial isavailablefromtheUniversityofArizona:

RalphE.Griswold
DepartmentofComputerScience
UniversityComputerCenter
TheUniversityofArizona
Tucson,Arizona 85721
U.S.A.

telephone:(602)626−1829

There is no charge for this material but magnetic tapes must be supplied with requests for machine−
readablematerial.

Documentswithidentifyingnumbersshouldberequestedbynumber.

1. Version 3.11 SIL source code and syntax table descriptions in machine−readable form. This
material is available in a variety of tape formats. The standard distribution is 9−track, 1600 bpi,
unlabeledfixed−blocked,EBCDIC.

2. S4D54c: Transportingthe SILVersion ofSNOBOL4; An Overview. Gives a brief description of the
processing of implementing the SILversion of SNOBOL4;suggested reading prior to serious work
ontheimplementation.

3. The Macro Implementation of SNOBOL4; A Case Study of Machine−Independent Software
Development. (author: Ralph E. Griswold, publisher: W. H. Freeman & Co.) A description of the
SIL version of SNOBOL4 that describes data structures, algorithms, the SIL macros, and gives
examples from the IBM 360 and CDC 6000 implementations. This book is available from book
sellers. The price is approximately $25.00. The terminology used in this book is different from that
usedintheactualSILsource. SeeS4D59below.

4. Corrigenda for The Macro Implementation of SNOBOL4. Corrections to the Freeman book listed
above.

5. S4D59: Comparison of Terminologies for the SIL Implementation of SNOBOL4. Explains the
differences between terminology of the Freeman book and that actually used in the machine−
readableSILprogram.

6. S4D26c: Source and Cross−Reference Listings for the SIL Implementation of SNOBOL4; Version
3.11. Listing of SNOBOL4 written in SIL. This document is primarily useful for itscross reference
toprogramsymbols.

7. S4D20a: IBM 360 Macro Definitions for Version 3 of SNOBOL4. Listing of the IBM 360 macro
definitions for SIL operations; primarily useful as an example of an existing implementation. The
macrodefinitionsarealsoavailable inmachine−readable form.

8. S4D19a: IBM 360Subroutines forVersion 3 of SNOBOL4. Listing of the IBM 360 subroutines that
support SIL operations; primarily useful as an example of an existing implementation. The
subroutinesarealsoavailable inmachine−readable form.

9. S4D57: Implementations of SNOBOL4. Compilation of SNOBOL4 implementations, including
thosedoneinSIL;primarilyusefulasasourceofcontactswithotherSILimplementors.

−97−

