
-- --

Version 3 of SNOBOL4

Installation Information for the IBM 360
Operating under OS

Note: This document is a revision of a document originally prepared in July 1971. No substantive changes
have been made since that date. The information here is obviously somewhat dated, but it should be func-
tional.

1. Installation Instructions

1.1. Installation Requirements

SNOBOL4 normally operates best in a partition of about 200K bytes. It will run in a minimum parti-
tion of about 165K bytes, depending on buffer requirements, nonresident system modules, external func-
tions, and so forth. Such a small partition will not give satisfactory service, however.

The SNOBOL4 load module for Version 3 requires 21 tracks on a 2314 disk.

1.2. Installation of Version 3.0

Version 3.0 is distributed on a 9−track, 1600 bpi tape with standard label S4V3. The first
file(LKED) contains input to the link editor. The second file (TEST) contains three sample programs that
may be used to test Version 3.0. Both files have RECFM=FB, LRECL=80, BLKSIZE=3200. LKED
contains 2458 logical records, while TEST contains 119.

1.2.1. Load Module Formation

Typical JCL to form the SNOBOL4 load module using a link edit cataloged procedure is:

// EXEC LKED
//LKED.SYSLMOD DD DSN=SNOBOL,UNIT=DISK,DISP=(NEW,KEEP),
// VOL=SER=XXXXXX,SPACE=(TRK,(20,5,1))
//LKED.SYSIN DD DSN=LKED,DISP=OLD,UNIT=9TRACK,VOL=SER=S4V3

The data set and volume names for SYSLMOD vary from installation to installation. The load module is
typically placed on SYS1.LINKLIB (rather than SNOBOL) to avoid JOBLIB cards. Other JCL details
may have to be changed to conform to installation conventions. The result of the link edit is an executable
load module with member name SNOBOL4.

1.2.2. Punching Test Programs

The test programs on file 2 can be punched by JCL similar to the following:

// EXEC PGM=IEEPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD UNIT=PUNCH
//SYSUT1 DD DSN=TEST,UNIT=9TRACK,VOL=SER=S4V3,
// DISP=OLD,LABEL=(2,SL)

The three test programs should be separated at the ‘‘end−of−file’’ cards that divide them, and then run indi-
vidually.

The first file may be punched by similar JCL, although that normally is not necessary.

S4N4f March 5, 1984



−− −−

− 2 −

1.2.3. Cataloged Procedure

A cataloged procedure for SNOBOL4 may be created by JCL similar to the following:

// EXEC PGM=IEBUPDAT,PARM=MOD
//SYSUT1 DD DSN=SYS1.PROCLIB,DISP=OLD
//SYSUT2 DD DSN=SYS1.PROCLIB,DISP=OLD
//SYSPRINT DD SYSOUT=A
//SYSIN DD DATA
./ ADD SNOBOL4,01,0,1
// EXEC PGM=SNOBOL4
//FT05F001 DD DDNAME=SYSIN
//FT06F001 DD SYSOUT=A
//FT07F001 DD UNIT=PUNCH
./ ENDUP
/∗

If a public library of external functions is available, a reference to it with the ddname SNOLIB should be
included in the cataloged procedure.

1.2.4. Executing SNOBOL4

With the cataloged procedure given above, SNOBOL4 can be run with the following deck setup:

//JOBLIB DD DSN=SNOBOL4,VOL=SER=XXXXXX,DISP=OLD,UNIT=DISK
// EXEC SNOBOL4
//SYSIN DD ∗
...

SNOBOL4 Source Deck
...

data
/∗

If SNOBOL4 is link edited into SYS1.LINKLIB, a JOBLIB is not necessary.

2. Updating to Version 3.5

Five updates presently apply to Version 3.0, yielding Version 3.5. Version 3.5 is obtained from Ver-
sion 3.0 by applying SUPERZAP corrections to the 3.0 load module. SUPERZAP is an IBM type 3 pro-
gram (PID 360D−03.0.003).

Typical JCL to convert to Version 3.5 is

// EXEC PGM=SUPERZAP
//SYSLIB DD DSN=SNOBOL4,VOL=SER=XXXXXX,DISP=OLD,UNIT=DISK
//SYSPRINT DD SYSOUT=A
//SYSIN DD ∗
...

SUPERZAP control cards
...
/∗

A unlabelled tape containing the SUPERZAP control cards for the five updates is included separately from
the distribution tape.

In addition to correcting errors in Versions 3.0, 3.1, 3.2, 3.3, and 3.4, these control cards change the
program titling information to identify Version 3.5.

S4N4f March 5, 1984



−− −−

− 3 −

3. Information for Programmers

3.1. Language Description

The basic reference is the Second Edition of the Prentice−Hall book, The SNOBOL4 Programming
Language (1971), which describes Version 3.

3.2. Use of the PARM Field

The PARM field of the SNOBOL4 EXEC card can be used to modify the default allocations of
space within the SNOBOL4 partition. Three parameters may be specified:

L the low bound on dynamic storage

H the high bound on dynamic storage

R the amount of storage reserved for other uses

All values are specified in bytes. Default values are L=35200, H=200000, R=10000. A typical
EXEC card, specifying nonstandard parameters, is

// EXEC SNOBOL4,PARM=’R=15000,L=64000,H=150000’

The parameters may be given in any order and any parameter may be omitted, in which case the
corresponding default is used. The PARM field is processed from left to right. A syntactic error terminates
processing of the PARM field at the point of error and without comment.

After L, H, and R are determined, a variable−length GETMAIN is executed to get an amount of
storage between R+L and R+H bytes. A FREEMAN is then executed to release bytes. If R+L bytes
are not available, the run is terminated with system completion code 804.

The following guidelines should be observed in overriding the default parameters:

1. Programs creating large numbers of different strings may run more slowly with a larger value of
H.

2. L should not be set below the default value except in special circumstances.

3. R reserves space for I/O buffers, nonresident access methods, external functions and so forth. R
may have to be set above the default value if many highly−blocked data sets are open simultaneously.

4. R ordinarily should not be set below the default value. If R is too small, termination during exe-
cution may occur with a completion code such as 804 and 80A.

3.3. Version 3 Errors Corrected in Version 3.5

3.0.1: In conversion to CODE, a statement that is erroneous because of improper termination does not
cause the conversion to fail. If the erroneous statement is subsequently executed, Program Error 28 occurs.

3.0.2: If Program Error 9 is treated as nonfatal because &ERRLIMIT is greater than zero, a program
interrupt results.

3.0.3: The FIELD function does not handle its second argument properly. FIELD(DT,N) returns the
(N−1)st field of DT as value. If N is 1, the data type name is returned. FIELD fails as it should if N is
greater than the number of fields defined for DT.

3.0.4: The CONVERT function does not handle the conversion of a string to STRING properly. The
result is always the formal identification STRING rather than the string itself.

3.0.5: The DATE function is not properly linked to the procedure that produces the date. Instead a mean-
ingless result is returned, which is interpreted by the SNOBOL4 system as an external data type.

3.1.1: A program interrupt occurs if storage regeneration is required during conversion from TABLE to
ARRAY.

3.1.2: The DATA function erroneously permits a prototype with no fields (e.g. DATA("MODE()")).
Corresponding data objects can be created, but cause a program interrupt during storage regeneration.

3.1.3: Program malfunction may occur if a nonfatal program error occurs during execution of a
programmer−defined trace procedure which is invoked to trace another nonfatal error.

S4N4f March 5, 1984



−− −−

− 4 −

3.1.4: EVAL(null) returns the integer 0, not the null string.

3.1.5: CODE(null) and CONVERT(null,"CODE") generate Error 4. They should return the null state-
ment.

3.1.6: EVAL(" ") returns an object of data type CODE, rather than the null string.

3.2.1: If failure occurs during evaluation of an unevaluated expression that is the argument of a pattern−
valued function, a program interrupt (CUT BY SYSTEM) occurs in some circumstances.

3.2.2: If CUT BY SYSTEM occurs during SNOBOL4 termination because of a FORTRAN I/O error, a
loop occurs.

3.2.3: An error in the implementation design of tables causes the following problems.

1. Assignment to a table reference is not made if the object of that assignment involves a computa-
tion that causes extension of the referenced table.

2. If the unary name operator (.) is applied to a table reference, the resulting name is disconnected if
the table is extended. Furthermore, the space occupied by the table before its extension is not collected
during storage regeneration.

3.3.1: Failure of a programmer−defined trace procedure because of return by FRETURN produces Error
17 (ERROR IN SNOBOL4 SYSTEM), rather than being ignored as it should be.

3.3.2: An error in the storage allocation procedure used in the concatenation of strings may cause a subse-
quent program interrupt (CUT BY SYSTEM) during storage regeneration.

3.3.3: If APPLY is used to invoke a programmer−defined function or data object creation function and no
argument is supplied, Error 17 occurs because such functions are not prepared to cope with the lack of an
argument. For example

APPLY("F")

produces Error 17 if, e.g., F is a programmer−defined function. However

APPLY("F",)

performs properly since one (null) argument is provided. Error 25 should be given in the former case.

3.4.1: Some termination messages do not allow enough space for the printing of statement numbers that
are more than three digits long.

3.4.2: In DUPL(S,N) if the size of S multipled by N is very large, undetected overflow can cause various
malfunctions.

3.4.3: If the argument to EVAL is a string that ends (erroneously) with a unary operator, Error 17 occurs
rather than EVAL failing as it, should. Similar errors occur if a statement in the source language or in
conversion to CODE ends with a unary operator.

3.4.4: If the argument of the unary @ operator or the second argument of the binary $ operator is an
unevaluated expression, and if the result of evaluating that expression during pattern matching is not a vari-
able, program malfunction results.

3.4. Errors not Corrected in Version 3.5

The following errors are known to exist in Version 3.5.

2.0.2: The number of arguments with which an external function can be called is limited to 20.

2.0.3: If an external function is unloaded using the UNLOAD function, the external function is undefined,
but any function OPSYNed to it is not. Subsequent use of a function OPSYNed to an unloaded external
function may cause a program interrupt.

3.5.1: The array function leaves a negative−length string that occasionally causes malfunction during a
subsequent storage regeneration.

3.5.2: In conversion from TABLE to ARRAY, if a storage regeneration is required to get space for the
array, the resulting prototype is erroneous and may cause malfunction during a subsequent storage regen-
eration.

S4N4f March 5, 1984



−− −−

− 5 −

3.5.3: Use of OPSYN for operators erroneously advances a pointer in the SNOBOL4 data region.
Repeated use of operator OPSYNing eventually causes data to be overwritten with resulting program mal-
function.

3.5.4: If the argument of ANY, BREAK, NOTANY, or SPAN is null, this error is not detected until pat-
tern matching is performed.

3.5.5: If failure occurs during evaluation of an unevaluated expression that was the argument of ANY,
BREAK, NOTANY, or SPAN, a program interrupt (CUT BY SYSTEM) occurs. This is the same type of
problem that is mentioned in Error 3.2.1.

3.5.6: If an illegal data type results from evaluating an expression during pattern matching that was the
argument of any pattern−valued function except ARBNO, CUT BY SYSTEM results.

3.5.7: An error in the quickscan heuristics causes erroneous failure to match in some cases when BREAK
occurs in an unevaluated expression.

3.5.8: If the argument of the binary $ operator is an unevaluated expression and it fails when evaluated
during pattern matching, CUT BY SYSTEM results during subsequent processing.

3.6.1: If the argument to POS, RPOS, TAB, RTAB, or LEN is a negative integer, this error is not noted
when the pattern is formed, but only when pattern matching is performed.

3.6.2: If the second argument of OPSYN has no definition, OPSYN performs no operation. In this case
OPSYN should make the first argument an undefined function.

The errors listed above will not be corrected by patches to the distributed object modules. Users or
Version 3.5 should be aware of these errors and attempt to find ways to program around them.

S4N4f March 5, 1984


